cho 2x^2-3y^2+xy=12 và 6x^2+x^2y=12+6y+xy^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\\left(x-y\right)\left(xy+6\right)=12\end{matrix}\right.\)
Trừ trên cho dưới:
\(\left(x-y\right)\left(2x+3y-xy-6\right)=0\Leftrightarrow\left(x-y\right)\left(x-3\right)\left(2-y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x=3\\y=2\end{matrix}\right.\)
TH1: \(x=y\) thay vào pt đầu ta được \(0=12\) (vô nghiệm)
TH2: \(x=3\Rightarrow-3y^2+3x+6=0\Rightarrow\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\)
TH3: \(y=2\Rightarrow2x^2+2x-24=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Vậy pt có 3 cặp nghiệm \(\left(x;y\right)=\left(3;-1\right);\left(3;2\right);\left(-4;2\right)\)
1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)
4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)
\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
`@` `\text {Ans}`
`\downarrow`
`x^2 + xy - 2x - 2y`
`= (x^2 - 2x) + (xy - 2y)`
`= x(x - 2) + y(x - 2)`
`= (x + y)(x - 2)`
____
`x^2 - xy - 6x + 6y`
`= (x^2 - 6x) - (xy - 6y)`
`= x(x - 6) - y(x - 6)`
`= (x - y)(x - 6)`
____
`5xy^2 - 5x + y^2 - 1`
`= (5xy^2 + y^2) - (5x + 1)`
`= y^2(5x + 1) - (5x + 1)`
`= (y^2 - 1)(5x + 1)`
`= (y - 1)(y + 1)(5x + 1)`
a: =(x^2+xy)-(2x+2y)
=x(x+y)-2(x+y)
=(x+y)(x-2)
b: =(x^2-xy)-(6x-6y)
=x(x-y)-6(x-y)
=(x-y)(x-6)
c: =5xy^2+y^2-5x-1
=y^2(5x+1)-(5x+1)
=(5x+1)(y^2-1)
=(5x+1)(y+1)(y-1)
Câu a, b, c thì đơn giản òi. Câu d phải chú ý điểm rơi:v
d) Ta có: \(D=\left(x-\frac{1}{2}\right)^4+\frac{1}{2}\left(3x^2-3x+\frac{15}{8}\right)\)
\(=\left(x-\frac{1}{2}\right)^4+\frac{3}{2}\left(x-\frac{1}{2}\right)^2+\frac{9}{16}\ge\frac{9}{16}\)
Đẳng thức xảy ra khi x = 1/2