K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021

Thay xx=√0,7 vào biểu thức ta được :

5√0,7^3 − 2√0,7^2 + 2,5√0,7 − 2,6 / √0,7^2 + 3√0,7 − 2,7

=3,5√0,7 − 1,4 + 2,5√0,7 − 2,6 / 0,7 + 3√0,7  −2,7

=6√0,7−4 / −2+3√0,7

=2

6 tháng 9 2021

b)Thay x=-√5 vào biểu thức. 

=50−25(−√5)+10−5(−√5)−30 / 5+10(−√5)−15

=30−30(−√5)/−10+10(−√5)=−3

21 tháng 7 2017

\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)

\(pt\Leftrightarrow4x^2+12+\sqrt{x-1}=4x\sqrt{5x-1}+4\sqrt{9-5x}\)

\(\Leftrightarrow4x^2-4+\sqrt{x-1}=4x\sqrt{5x-1}-8+4\sqrt{9-5x}-8\)

\(\Leftrightarrow4\left(x^2-1\right)+\sqrt{x-1}=\frac{16x^2\left(5x-1\right)-64}{4x\sqrt{5x-1}+8}+\frac{16\left(9-5x\right)-64}{4\sqrt{9-5x}+8}\)

\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)+\frac{x-1}{\sqrt{x-1}}=\frac{80x^3-16x^2-64}{4x\sqrt{5x-1}+8}+\frac{80-80x}{4\sqrt{9-5x}+8}\)

\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)+\frac{x-1}{\sqrt{x-1}}-\frac{16\left(x-1\right)\left(5x^2+4x+4\right)}{4x\sqrt{5x-1}+8}+\frac{80\left(x-1\right)}{4\sqrt{9-5x}+8}=0\)

\(\Leftrightarrow\left(x-1\right)\left(4\left(x+1\right)+\frac{1}{\sqrt{x-1}}-\frac{16\left(5x^2+4x+4\right)}{4x\sqrt{5x-1}+8}+\frac{80}{4\sqrt{9-5x}+8}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

1 tháng 7 2021

\(a,\) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+6\)

\(< =>20x-5x^2+5x^2-12-x-6=0\)

\(< =>19x-18=0\)

\(< =>x=\dfrac{18}{19}\)

\(b,\left(2x-7\right)\left(5+4x\right)-8\left(x^2-4x+5\right)=-30\)

\(< =>10x+8x^2-35-28x-8x^2+24x-40+30=0\)

\(< =>6x-45=0< =>x=\dfrac{45}{6}=7,5\)

1 tháng 7 2021

a) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+\Rightarrow6\\ \Leftrightarrow20x-5x^2+5x^2-12=x+6\\ \Leftrightarrow20x-12=x+6\\\Rightarrow20x-x=6+12\\ \Rightarrow19x=18\\ \Rightarrow x=\dfrac{18}{19}\)

b) \(\left(2x-7\right)\left(5+4x\right)-8\left(x^2-3x+5\right)=-30\\ \Rightarrow10x+8x^2-35-28x-8x^2+24x-40=-30\\ \Rightarrow6x-75=-30\\ \Rightarrow6x=45\\ \Rightarrow x=\dfrac{15}{2}\)

NV
24 tháng 6 2019

a/ ĐXĐK: ...

\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)

\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)

\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))

\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)

NV
24 tháng 6 2019

d/

\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)

Đặt \(\sqrt{x^2+x+1}=a\)

\(\Leftrightarrow3x^2-5ax+2a^2=0\)

\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)