Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay xx=√0,7 vào biểu thức ta được :
5√0,7^3 − 2√0,7^2 + 2,5√0,7 − 2,6 / √0,7^2 + 3√0,7 − 2,7
=3,5√0,7 − 1,4 + 2,5√0,7 − 2,6 / 0,7 + 3√0,7 −2,7
=6√0,7−4 / −2+3√0,7
=2
\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)
\(pt\Leftrightarrow4x^2+12+\sqrt{x-1}=4x\sqrt{5x-1}+4\sqrt{9-5x}\)
\(\Leftrightarrow4x^2-4+\sqrt{x-1}=4x\sqrt{5x-1}-8+4\sqrt{9-5x}-8\)
\(\Leftrightarrow4\left(x^2-1\right)+\sqrt{x-1}=\frac{16x^2\left(5x-1\right)-64}{4x\sqrt{5x-1}+8}+\frac{16\left(9-5x\right)-64}{4\sqrt{9-5x}+8}\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)+\frac{x-1}{\sqrt{x-1}}=\frac{80x^3-16x^2-64}{4x\sqrt{5x-1}+8}+\frac{80-80x}{4\sqrt{9-5x}+8}\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)+\frac{x-1}{\sqrt{x-1}}-\frac{16\left(x-1\right)\left(5x^2+4x+4\right)}{4x\sqrt{5x-1}+8}+\frac{80\left(x-1\right)}{4\sqrt{9-5x}+8}=0\)
\(\Leftrightarrow\left(x-1\right)\left(4\left(x+1\right)+\frac{1}{\sqrt{x-1}}-\frac{16\left(5x^2+4x+4\right)}{4x\sqrt{5x-1}+8}+\frac{80}{4\sqrt{9-5x}+8}\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
a) ĐK: \(x\ge5\)
\(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)
\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\) (t/m)
Vậy
b) \(-5x+7\sqrt{x}=-12\)
\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
đến đây tự làm
c) d) e) bạn bình phương lên
f) \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)
\(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)
\(\ge\sqrt{9}+\sqrt{25}=8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)
Vậy...
a/ ĐXĐK: ...
\(\Leftrightarrow9x^2-1-x-8x\sqrt{x+1}=0\)
\(\Leftrightarrow x^2-x-1+8x\left(x-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x^2-x-1+\frac{8x\left(x^2-x-1\right)}{x+\sqrt{x+1}}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\Rightarrow x=...\\\frac{-8x}{x+\sqrt{x+1}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow-8x=x+\sqrt{x+1}\)
\(\Leftrightarrow-9x=\sqrt{x+1}\) (\(x\le0\))
\(\Leftrightarrow81x^2-x-1=0\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{1-5\sqrt{13}}{162}\\x=\frac{1+5\sqrt{13}}{162}>0\left(l\right)\end{matrix}\right.\)
d/
\(\Leftrightarrow3x^2+2\left(x^2+x+1\right)-5x\sqrt{x^2+x+1}=0\)
Đặt \(\sqrt{x^2+x+1}=a\)
\(\Leftrightarrow3x^2-5ax+2a^2=0\)
\(\Leftrightarrow\left(x-a\right)\left(3x-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=a\\3x=2a\end{matrix}\right.\) (\(x\ge0\))
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=x\\2\sqrt{x^2+x+1}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=x^2\\2\left(x^2+x+1\right)=9x^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\7x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1+\sqrt{15}}{7}\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
Đặt \(\sqrt{x^2-5x+14}=a\) và \(\sqrt{x^2-5x+10}=b\) \(\left(a,b>0\right)\)
\(\Rightarrow a-b=2\)
\(\Rightarrow a^2-b^2=x^2-5x+14-x^2+5x-10=4\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=4\)
\(\Leftrightarrow a-b=2\)
\(\Leftrightarrow\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}=2\left(đpcm\right)\)