K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Ta có : \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)\)

\(=\overline{......0}\)

\(\Rightarrow\)Chữ số tận cùng của \(A\)là \(0\)

Bài 3:

a)Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+...+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=31+2^4.31+...+2^{96}.31\)

\(=31\left(1+2^4+...+2^{96}\right)⋮31\)

\(\Rightarrow\)\(đpcm\)

b) Ta có : \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(\Rightarrow2C=2^2+2^3+2^4+...+2^{100}+2^{101}\)

\(\Rightarrow2C-C=\left(2^2+2^3+2^4+...+2^{100}+2^{101}\right)-\left(2+2^2+2^3+...+2^{99}+2^{100}\right)\)

\(\Rightarrow C=2^{101}-2\)

Mà \(2^{2x}-2=C\)

\(\Rightarrow2^{2x}-2=2^{101}-2\)

\(\Rightarrow2^{2x}=2^{101}\)

\(\Rightarrow2x=101\)

\(\Rightarrow x=\frac{101}{2}\)

Vậy \(x=\frac{101}{2}\)

Bài 2:

Ta có : \(\overline{abcd}=1000a+100b+10c+d\)

\(=1000a+96b+8c+\left(d+2c+4b\right)\)

\(=8\left(125a+12b+c\right)+\left(d+2c+4b\right)\)

Vì \(\hept{\begin{cases}d+2c+4b⋮8\\8\left(125a+12b+c\right)⋮8\end{cases}}\)

\(\Rightarrow\overline{abcd}⋮8\)

\(\Rightarrowđpcm\)

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

7 tháng 12 2023

Bài 1:

a; (n + 4) \(⋮\) ( n - 1)  đk n ≠ 1

 n - 1 + 5  ⋮ n - 1

            5  ⋮ n - 1

n - 1     \(\in\) Ư(5) = {-5; -1; 1; 5}

\(\in\) { -4; 0; 2; 6}

 

7 tháng 12 2023

Bài 1 b; (n2 + 2n - 3) \(⋮\) (n + 1) đk n ≠ -1

          n2 + 2n + 1 - 4 ⋮ n + 1

          (n + 1)2      -  4 ⋮ n + 1

                                4 ⋮ n + 1

           n + 1  \(\in\) Ư(4) = {-4; -2; -1; 1; 2; 4}

           n  \(\in\)  {-5; -3; -2; 0; 1; 3}

           

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.

Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$. 

$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)

Do đó $p$ chia $3$ dư $1$

Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)

b.

$\overline{abcd}=1000a+100b+10c+d$

$=1000a+96b+8c+(d+2c+4b)$

$=8(125a+12b+c)+(d+2c+4b)$

Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$

$\Rightarrow \overline{abcd}\vdots 8$

Ta có đpcm.

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

Bài 1: Tìm số tự nhiên n, sao cho:a) 2n+5 chia hết cho n+1b) 4n-7 chia hết cho n-1c) 10-2n chia hết cho n-2d) 5n-8 chia hết cho 4-ne) n^2 +3n+6 chia hết cho n+3Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100a) chứng tỏ rằng A chia hết cho 2,3,15b) A là số Nguyên tố hay Hợp số? Vì sao ?c) Tìm chữ số tận cùng của ABài 3: Tìm ƯCLN a) 2n+1 và 3n+1b) 9n+13 và 3n+4c) 2n+1 và 2n+3Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số...
Đọc tiếp

Bài 1: Tìm số tự nhiên n, sao cho:

a) 2n+5 chia hết cho n+1

b) 4n-7 chia hết cho n-1

c) 10-2n chia hết cho n-2

d) 5n-8 chia hết cho 4-n

e) n^2 +3n+6 chia hết cho n+3

Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100

a) chứng tỏ rằng A chia hết cho 2,3,15

b) A là số Nguyên tố hay Hợp số? Vì sao ?

c) Tìm chữ số tận cùng của A

Bài 3: Tìm ƯCLN 

a) 2n+1 và 3n+1

b) 9n+13 và 3n+4

c) 2n+1 và 2n+3

Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:

a) 7n+10 và 5n+7

b) 2n+3 và 4n+7

Bài 5:Tìm số tự nhiên a,b

a) a x b=12

b) (a-1) (b+2)=7

c) a+b+72 và ƯCLN(a,b)+9

d) a x b= 300 và ƯCLN(a,b)=5

e) ƯCLN(a,b)=12 và BCNN(a,b)= 72

Bài 6 : Chứng tỏ rằng:

a) (10^n + 8 ) chia hết cho 9

b) (10^100+5^3) chia hết cho 3 và 9

c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )

d) (10^9 +10^8 +10^7) chia hết cho 555

Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn

ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!

26
20 tháng 11 2014

Bài 1:

a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N

=>n+1 thuộc {1;3}

=>n thuộc{0;2}

b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N

=>n-1 thuộc{-1;1;3}

=>n thuộc {1;2;4}

c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N

=>n-2 thuộc {-2;-1;1;2;7;14}

=>n thuộc {0;1;3;4;9;16}

d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N

=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}

=>n thuộc{0;2;3;5;6;8;11;18;32}

e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N

=>n-3 thuộc{-3;-2;-1;1;2;3;6}

=>n thuộc{0;1;2;4;5;6;9}

Bài 2:

a)A=2+22+23+...+2100 chia hết cho 2

A=2+22+23+24+...+299+2100

A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3

A=2+22+23+24+25+26+27+28+...+297+298+299+2100

A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+2<=>Achia hết cho 15

b)A chia hết cho 2 => A là hợp số

c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100

A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)

A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)

A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)

A=...0+...0+...+...0

A=0

20 tháng 11 2014

Bài 3:

a)gọi UCLN của 2n+1 và 3n+1 là d

2n+1 chia hết cho d => 6n+3 chia hết cho d 

3n+1 chia hết cho d =>6n+2 chia hết cho d 

=>6n+3-(6n+2) chia hết cho d 

1 chia hết cho d 

=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d  

b)Gọi UCLN cua 9n+13và 3n+4 là m

9n+13 chia hết cho m

3n+4 chia hết cho m=>9n+12 chia hết cho m

=>9n+13-(9n+12) chia hết cho m

1 chia hết cho m 

=> m=1

=> UCLN cua 9n+13 va 3n+4 là1

c) gọi UCLN cua 2n+1 và 2n+3 là n

2n+3 chia hết cho n

2n+1 chia hết cho n

2n+3-(2n+1) chia hết cho n

2chia hết cho n

n thuộc {1,2}

 => UCLN của 2n+1 và 2n+3 là 1 hoặc 2

Bài 1: Tìm số tự nhiên n, sao cho:a) 2n+5 chia hết cho n+1b) 4n-7 chia hết cho n-1c) 10-2n chia hết cho n-2d) 5n-8 chia hết cho 4-ne) n^2 +3n+6 chia hết cho n+3Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100a) chứng tỏ rằng A chia hết cho 2,3,15b) A là số Nguyên tố hay Hợp số? Vì sao ?c) Tìm chữ số tận cùng của ABài 3: Tìm ƯCLN a) 2n+1 và 3n+1b) 9n+13 và 3n+4c) 2n+1 và 2n+3Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số...
Đọc tiếp

Bài 1: Tìm số tự nhiên n, sao cho:

a) 2n+5 chia hết cho n+1

b) 4n-7 chia hết cho n-1

c) 10-2n chia hết cho n-2

d) 5n-8 chia hết cho 4-n

e) n^2 +3n+6 chia hết cho n+3

Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100

a) chứng tỏ rằng A chia hết cho 2,3,15

b) A là số Nguyên tố hay Hợp số? Vì sao ?

c) Tìm chữ số tận cùng của A

Bài 3: Tìm ƯCLN 

a) 2n+1 và 3n+1

b) 9n+13 và 3n+4

c) 2n+1 và 2n+3

Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:

a) 7n+10 và 5n+7

b) 2n+3 và 4n+7

Bài 5:Tìm số tự nhiên a,b

a) a x b=12

b) (a-1) (b+2)=7

c) a+b+72 và ƯCLN(a,b)+9

d) a x b= 300 và ƯCLN(a,b)=5

e) ƯCLN(a,b)=12 và BCNN(a,b)= 72

Bài 6 : Chứng tỏ rằng:

a) (10^n + 8 ) chia hết cho 9

b) (10^100+5^3) chia hết cho 3 và 9

c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )

d) (10^9 +10^8 +10^7) chia hết cho 555

Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn

ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!

3

dài thấy mợ luôn để t lm đc bài nào thì t lm

a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N

=>n+1 thuộc {1;3}

=>n thuộc{0;2}

b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N

=>n-1 thuộc{-1;1;3}

=>n thuộc {1;2;4}

c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N

=>n-2 thuộc {-2;-1;1;2;7;14}

=>n thuộc {0;1;3;4;9;16}

d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N

=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28} 

=>n thuộc{0;2;3;5;6;8;11;18;32}

e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N

=>n-3 thuộc{-3;-2;-1;1;2;3;6}

=>n thuộc{0;1;2;4;5;6;9}

Bài 2:

a)A=2+2^2+2^3+...+2^100  chia hết cho 2

A=2+2^2+2^3+2^4+...+2^99+2^100

A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3

A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100

A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15

b)A chia hết cho 2 => A là hợp số.

c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100

A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )

A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)

A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)

A=...0+...0+...+...0.

A=....0

14 tháng 10 2023

a) Tổng A có số số hạng là:

`(101-1):1+1=101`(số hạng)

b) `A=2+2^3 +2^5 +...+2^101`

`2^2 A=2^3 +2^5 +2^7 +...+2^103`

`4A-A=2^3 +2^5 +2^7 +...+2^103 -2-2^3 -2^5 -...-2^101`

`3A=2^103 -2`

`=>3A+2=2^103 -2+2=2^103`

c) `A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4 +...+2^100)⋮2`

`A=2+2^3 +2^5 +...+2^101`

`A=2(1+2^2 +2^4)+...+2^97 .(1+2^2 +2^4)`

`A=2.21+...+2^97 .21`

`A=21(2+...+2^97)⋮21`

14 tháng 10 2023

loading...  loading...