Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: Xét tứ giác AHED có
B là trung điểm chung của AE và HD
=>AHED là hình bình hành
=>DE//AH
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔACH
b: Xét tứ giác AHED có
B là trung điểm chung của AE và HD
=>AHED là hình bình hành
=>DE//AH
a: Xét ΔBAH và ΔBEH có
BA=BE
AH=EH
BH chung
Do đó: ΔBAH=ΔBEH
b: ΔBAE cân tại B
mà BH là đường trung tuyến
nên BH vuông góc với AE
c: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
=>góc BED=90 độ
=>góc DEC=90 độ
a: Xét ΔABC và ΔADE có
AB=AD
\(\widehat{BAC}=\widehat{DAE}\)(hai góc đối đỉnh)
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAHB vuông tại H và ΔAKD vuông tại K có
AB=AD
\(\widehat{ABH}=\widehat{ADK}\)(ΔABC=ΔADE)
Do đó: ΔAHB=ΔAKD
=>BH=DK
c: Ta có: ΔAHB=ΔAKD
=>\(\widehat{HAB}=\widehat{DAK}\)
mà \(\widehat{HAB}+\widehat{HAD}=180^0\)(hai góc kề bù)
nên \(\widehat{DAK}+\widehat{DAH}=180^0\)
=>K,A,H thẳng hàng
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đo: ΔBAD=ΔBED
=>DA=DE
b,c: Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
BA=BE
DA=DE
Do đó; BD là trung trực của AE
=>BD vuông góc với AE
=>BD vuông góc với FC
d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
Do đó: ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc ADF+góc ADE=180 độ
=>D,E,F thẳng hàng
Bạn nên ktra lại con số 15cm
a/ Áp dụng định lí Pythagoras cho t/g ABC vuông tại A có
\(AB^2+AC^2=BC^2\)
=> \(AC=\sqrt{161}\) (cm)
b/ t/g ABH vuông tại H và t/g EBH vuông tại H có
AB = EB
BH : chung
=> t/g ABH=t/g EBH (ch-cgv)
=> HA = HE (2 cạnh t/ứ)
c/ Có \(\widehat{BAH}=\widehat{BEH}\) (do t/g ABH = t/g EBH)
=> \(180^o-\widehat{BAH}=180^o-\widehat{BEH}\)
=> \(\widehat{EAD}=\widehat{AEC}\)
=> t/g AEC = t/g EAD
=> AC = DE
d/
AB = BEAD = EC
=> AB + AD = BE + EC
=> BD = BC=> t/g BCD cân tại B
Có t/g ABH = t/g EBH
=> \(\widehat{ABH}=\widehat{EBH}\)
=> BH là pg góc ABEHay BH là pg góc DBCXét t/g BDC có BH là đường pg
=> BH đồng thời là đường cao
=> BH ⊥ DC