Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = a + b -5
B = - b - c + 1
D = b - a
A + B + D = (a + b -5) + (-b - c + 1) + (b - a)
A + B + D = a + b - 5 - b - c + 1 + b - a
A + B + D = (a - a) + (b - b) + b - c - (5 - 1)
A + B + D = 0 + 0 + b - c - 4
A + B + D = b - c - 4 = C
Vậy A + B + D = C (đpcm)
Xét các số thực a,b,c thỏa mãn 3|a-b|=5|b-c|=7|c-a|. Chứng minh rằng a=b=c.
Ai biết giúp mình với ạ.
TH1: Nếu \(a\ge b\ge c\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(b-c\right)=7\left(a-c\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5b-5c\\5b-5c=7a-7c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+5c=8b\\7a-2c=5b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a+10c=16b\\35a-10c=25b\end{matrix}\right.\) \(\Rightarrow41a=41b\Leftrightarrow a=b\). Điều này có nghĩa là \(a-b=0\), từ đó suy ra \(5\left(b-c\right)=0\Leftrightarrow b=c\). Vậy \(a=b=c\).
TH2: Nếu \(b\ge c\ge a\) thì đk đã cho tương đương với \(3\left(b-a\right)=5\left(b-c\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3b-3a=5b-5c\\5b-5c=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a+5b=12c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\-14a-10b=-24c\end{matrix}\right.\) \(\Rightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(b-a\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\).
TH3: Nếu \(c\ge a\ge b\) thì đk đã cho tương đương với \(3\left(a-b\right)=5\left(c-b\right)=7\left(c-a\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}3a-3b=5c-5b\\5c-5b=7c-7a\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a+2b=5c\\7a-5b=2c\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}15a+10b=25c\\14a-10b=4c\end{matrix}\right.\) \(\Rightarrow29a=29c\Leftrightarrow a=c\). Từ đó suy ra \(a-c=0\) hay \(3\left(a-b\right)=0\Leftrightarrow a=b\). Vậy \(a=b=c\)
Tất cả các trường hợp còn lại làm tương tự và đều suy ra được \(a=b=c\). Ta có đpcm.
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
xin lỗi nha mình không biết chủ đề nào nên mới chọn đại đây là bài của lớp 7 nha các bạn
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)