<<chú phú cưới zợ hơ hơ>>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trọng tâm của tam giác đều cách đều ba cạnh của nó :
Giả sử ∆ABC đều có trọng tâm G
=> GA = 2323AN; GB = 2323BM; GC = 2323EC
Vì ∆ABC đều nên ba trung tuyến AN, BM, CE bằng nhau
=> GA = GB = GC
Do đó: ∆AMG = ∆CMG (c.c.c)
=> ˆAMG=ˆCMGAMG^=CMG^
Mà ˆAMG=ˆCMGAMG^=CMG^ = 1800
=> ˆAMGAMG^ = 900
=> GM ⊥ AC tức là GM khoảng cách từ G đến AC
Chứng minh tương tự GE, GN là khoảng cách từ G đến AB, AC
Mà GM =1313BM; GN = 1313AN; EG = 1313EC
Và AN = BM = EC nên GM = GN = GE
Hay G cách đều ba cạnh của tam giác ABC
dùng các công thức trong tam giác vuông
\(\alpha\)và\(\beta\) là hai góc nhọn phụ nhau
\(\Rightarrow\sin\alpha=\cos\beta\)và ngược lại
\(\tan\alpha=\cot\beta\)và ngược lại
còn có công thức \(\tan\alpha.\cot\alpha=1\)
Kết quả hơi lớn bạn nhé!
A=\(\frac{1}{31}\left[\frac{31}{5}\left(9-\frac{1}{2}\right)-\frac{17}{2}\left(4+\frac{1}{5}\right)+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{930}\right]\)
=\(\frac{1}{31}\left[\frac{31}{5}\left(\frac{18}{2}-\frac{1}{2}\right)-\frac{17}{2}\left(\frac{20}{5}+\frac{1}{5}\right)+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{30.31}\right]\)
=\(\frac{1}{31}\left[\frac{31}{5}.\frac{17}{2}-\frac{17}{2}.\frac{21}{5}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{30}-\frac{1}{31}\right]\)
=\(\frac{1}{31}\left[\frac{17}{2}.\left(\frac{31}{5}-\frac{21}{5}\right)+1-\frac{1}{31}\right]\)
=\(\frac{1}{31}\left[\frac{17}{2}.\frac{10}{5}+\frac{31}{31}-\frac{1}{31}\right]\)
=\(\frac{1}{31}\left[\frac{17}{2}.2+\frac{30}{31}\right]\)
=\(\frac{1}{31}\left[17+\frac{30}{31}\right]\)
=\(\frac{1}{31}\left[\frac{527}{31}+\frac{30}{31}\right]\)
=\(\frac{1}{31}.\frac{557}{31}=\frac{557}{961}\)
\(=\dfrac{119}{23}\left(27+\dfrac{3}{47}-4-\dfrac{3}{47}\right)=23\cdot\dfrac{119}{23}=119\)
A= \(\left(1-\frac{1}{1+2}\right)\)\(\left(1-\frac{1}{1+2+3}\right)\) \(\left(1-\frac{1}{1+2+3+4}\right)\) .....\(\left(1-\frac{1}{1+2+3+...+2005+2006}\right)\)
A = \(\left(1-\frac{1}{3}\right)\) \(\left(1-\frac{1}{6}\right)\) \(\left(1-\frac{1}{10}\right)\) .... \(\left(1-\frac{1}{2013021}\right)\)
= \(\frac{2}{3}\) . \(\frac{5}{6}\) . \(\frac{9}{10}\) .....\(\frac{2013020}{2013021}\)
= \(\frac{4}{6}\).\(\frac{10}{12}\).\(\frac{18}{20}\)....\(\frac{4026040}{4026042}\)
= \(\frac{1.4}{2.3}\).\(\frac{2.5}{3.4}\).\(\frac{3.6}{4.5}\).\(\frac{2005.2008}{2006.2007}\)
= \(\frac{1.2.3.4...2005}{2.3.4.5...2006}\).\(\frac{4.5.6...2008}{3.4.5...2007}\)
= \(\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)