K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

a) Phân tích  15 n   + 15 n + 2 = 113.2. 15 n .

b) Phân tích  n 4   –   n 2 = n 2 (n - 1)(n +1).

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.

Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$

$\Rightarrow n^4+5n^2+9\vdots 11$

$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$

$\Rightarrow n^4-6n^2+9\vdots 11$

$\Rightarrow (n^2-3)^2\vdots 11$

$\Rightarrow n^2-3\vdots 11$

Đặt $n^2-3=11k$ với $k$ nguyên

Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)

Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$

7 tháng 11 2017

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

NV
5 tháng 5 2021

Đặt \(A=n^4-10n^2+9\)

\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3

\(\Rightarrow A⋮3\)

Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Do n lẻ, đặt \(n=2k+1\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8

\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)

Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)

25 tháng 1 2022

Thầy ơi cho em hỏi tại sao A lại chia hết cho 16.8 ạ ?? Thầy có thể giải thích được không ạ ?

13 tháng 11 2015

1,40 số

2,100008

3,10;12;15;30;60;

4,n=1;5

5,450;560;460;405;504;506;605;406;604

làm nốt đi