K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

Gọi (MN): y=ax+b

Thay x=1 và y=1 vào hàm số y=ax+b, ta được: 

a+b=1

hay a=1-b

Thay x=2 và y=-2 vào hàm số y=ax+b, ta được: 

\(2a+b=-2\)

\(\Leftrightarrow2\left(1-b\right)+b=-2\)

\(\Leftrightarrow2-2b+b+2=0\)

\(\Leftrightarrow4-b=0\)

hay b=4

Thay b=4 vào biểu thức a=1-b, ta được: 

a=1-4=-3

Vậy: (MN): y=-3x+4

Thay x=-1 và y=7 vào hàm số y=-3x+4, ta được:

\(-3\cdot\left(-1\right)+4=7\)

\(\Leftrightarrow3+4=7\)(đúng)

Vậy: M,N,P thẳng hàng(đpcm)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: M(1; 3) và N (4; 2)

\( \Rightarrow \overrightarrow {OM} (1;3),\;\,\overrightarrow {ON} (4;2),\;\overrightarrow {MN}  = (4 - 1;2 - 3) = (3; - 1)\)

\( \Rightarrow OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{1^2} + {3^2}}  = \sqrt {10} ,\)\(ON = \left| {\overrightarrow {ON} } \right| = \sqrt {{4^2} + {2^2}}  = 2\sqrt 5 ,\)\(MN = \left| {\overrightarrow {MN} } \right| = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}}  = \sqrt {10} \)

b) Dễ thấy: \(OM = \sqrt {10}  = MN\)\( \Rightarrow \Delta OMN\) cân tại M.

Lại có: \(O{M^2} + M{N^2} = 10 + 10 = 20 = O{N^2}\)

\( \Rightarrow \) Theo định lí Pythagore đảo, ta có \(\Delta OMN\)vuông tại M.

Vậy \(\Delta OMN\) vuông cân tại M.

ai giúp mình câu b với 

29 tháng 12 2021

a: \(AB=\sqrt{\left[2-\left(-2\right)\right]^2+\left(-1-2\right)^2}=5\)

\(BC=\sqrt{\left(5-2\right)^2+\left(3+1\right)^2}=5\)

Do đó: AB=BC

hay ΔABC cân tại B

giúp mình với

 

29 tháng 12 2021

a: \(AB=\sqrt{\left(2+2\right)^2+\left(-1-2\right)^2}=5\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

Do đó: ΔABC cân tại B

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Ta có: \(\overrightarrow {AB}  = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC}  = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)

Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.

Vậy A, B, C là ba đỉnh của một tam giác.

b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)

c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)

\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 7\end{array} \right.\end{array}\)

Vậy tọa độ điểm D là (-3; -7).

NV
23 tháng 12 2022

a.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng

\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác

b.

Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)

Gọi G là trọng tâm tam giác, theo công thức trọng tâm: 

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)

c.

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)

ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)

\(\Rightarrow D\left(5;-5\right)\)

NV
13 tháng 12 2020

a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)

Do đường thẳng AB qua A và B nên ta có:

\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)

b. Thay tọa độ C vào pt AB:

\(-1=2.0-1\) (thỏa mãn)

\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng

13 tháng 12 2020

undefined

PTHĐGĐ là;
x^2-2mx-3+2m=0

Δ=(-2m)^2-4(2m-3)

=4m^2-8m+12

=4m^2-8m+4+8

=(2m-2)^2+8>0

=>(P) luôn cắt (d) tại hai điểm phân biệt

x1^2+x2^2=14

=>(x1+x2)^2-2x1x2=14

=>(2m)^2-2(2m-3)=14

=>4m^2-4m+6-14=0

=>4m^2-4m-8=0

=>m^2-m-2=0

=>(m-2)(m+1)=0

=>m=2 hoặc m=-1