Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉnh lại đề: kẻ các đường cao AH và BK cắt nhau tại I
a) Xét \(\Delta BKC\) và \(\Delta AHC\)có:
\(\widehat{BKC}=\widehat{AHC}=90^0\)
\(\widehat{C}\) chung
suy ra: \(\Delta BKC~\Delta AHC\)
b) \(\Delta BKC~\Delta AHC\)
\(\Rightarrow\)\(\frac{KC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow\)\(\frac{KC}{BC}=\frac{HC}{AC}\)
Xét \(\Delta HKC\)và \(\Delta ABC\) có:
\(\frac{KC}{BC}=\frac{HC}{AC}\) (cmt)
\(\widehat{C}\) chung
suy ra: \(\Delta HKC~\Delta ABC\) (c.g.c)
a: Ta có: ΔBKC vuông tại K
mà KH là trung tuyến
nên KH=BH
=>ΔHBK cân tại H
b: góc BAH=90 độ-góc ABC
góc IAK=90 độ-góc ACB
mà góc ABC=góc ACB
nên góc BAH=góc IAK
c: Gọi G là trung điểm của AI
góc GKH=góc GKI+góc HKI
=góc GIK+góc HBI
=góc BIH+góc HBI=90 độ
=>HK là tiếp tuyến của (G)
a) BD; CE là đường cao => tam giác ABD và tam giác ACE vuông : có: AB = AC (do tam giác ABC cân tại A ); góc A chung
=> tam giác ABD = ACE (cạnh huyền - góc nhọn )
b) Tam giác BDC vuông tại D có trung tuyến DH ứng với cạnh huyền BC => DH = HC = BC/ 2
=> tam giác HDC cân tại H
c) sửa đề: chứng minh: DM = MC
Tam giác DHC cân tại H có HM là đuơng cao nên đông thời là đường trung tuyến => M là TĐ của DC=> DM = MC
d) Tam giác HND vuông tại M có: MI là trung tuyến => MI = HI = HD/2
=> tam giác IHM cân tại I => góc IHM = IMH
lại có HM là p/g của góc DHC => góc IHM = MHC
=> góc IMH = MHC mà 2 góc này ở vị trí SLT => MI // HC mà HC vuông góc với AH
=> MI vuông góc với AH
bạn Nobita Kun giải bài không theo điểm như đề bài cho, ý c đề bài đúng rồi ạ. ý d thì bạn hiểu nhầm đề rồi, bạn xem lại điểm I nhé
a; Xét ΔABC có
H là trung điểm của BC
HK//AB
Do đó: K là trung điểm của AC
Xét ΔABC có
AH là đường trung tuyến
BK là đường trung tuyến
AH cắt BK tại G
Do đó: G là trọng tâm của ΔABC
b: Xét ΔABC có
G là trọng tâm
CI là đường trung tuyến
Do đó: C,I,G thẳng hàng
c: Xét tứ giác AIHK có
HK//AI
HK=AI
Do đó: AIHK là hình bình hành
mà AI=AK
nên AIHK là hình thoi
=>KI là đường trung trực của AH
juohugy
j ik gyi fyotb7ytygyvudgergg4 4