căn bậc 2 của 0,09 và 0,64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\) (1)
\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\) (2)
Từ (1) và (2) => x = y
b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\) (1)
\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)
Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)
(1),(2),(3) => \(x>y\)
Giữa vân sáng bậc 3 và bậc 9 bức xạ $\lambda _{1}$ có số vân sáng của bức xạ $\lambda _{1}$ :
3 < k1 < 9 $\Rightarrow $ có 5 vân sáng
Giữa vân bậc 3 và 9 của bức xạ $\lambda _{1}$ có số vân sáng của bức xạ $\lambda _{2}$:
$\dfrac{3.\lambda_1}{\lambda_2}$ < k2 < $\dfrac{9.\lambda_1}{\lambda_2}$
$\Leftrightarrow $ 4 < k2 < 12 suy ra k2= 7
Mà giữa vân bậc 3 và 9 của bức xạ $\lambda _{1}$ có 1 vị trí vân sáng bức xạ $\lambda _{1}$ và $\lambda _{2}$ trùng nhau (tại vân sáng thứ 6) nên số vân sáng sẽ là : 7 + 5 - 1 = 11 vân sáng
\(=\sqrt{5}-\sqrt{3}+\sqrt{5}-2=2\sqrt{5}-2-\sqrt{3}\)
\(\sqrt{0,09}=0,3\)
\(\sqrt{0,64}=0,8\)
√0,64=0,80,64=0,8 vì 0,8 ≥ 0 và (0,8)2 = 0,64