Tìm giá trị nhỏ nhất
c = 1.7+|3.4-x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(A\le0,5\)
Dấu "=" xảy ra khi x-3,5 = 0
<=> x = 3,5
Vậy max A = 0,5 khi x = 3,5
\(B\le-2\)
Dấu "=" xảy ra khi 1,4 -x =0
<=> x = 1,4
Vậy max B = -2 khi x =1,4
1.
A nhỏ hơn hoặc bằng 0,5 suy ra GTLN của A là 0,5.
B sẽ nhơ hơn hoặc bằng 2 suy ra GTLN
\(\text{A=1,7+|3,4-x|}\)
Vì \(\left|3,4-x\right|\ge0\Rightarrow1,7+\left|3,4-x\right|\ge1,7\)
Biểu thức C đạt giá trị nhỏ nhất khi:
\(\text{1,7+|3,4-x|=1,7}\)
\(\Rightarrow|3,4-x|=0\)
\(\Rightarrow\text{3,4-x=0}\)
\(\Rightarrow x=3,4\)
Vậy giá trị nhỏ nhất của C là \(\text{1,7 }\) khi \(\text{x=3,4}\)
\(A=1,7+\left|3,4-x\right|\)
\(\left|3,4-x\right|\ge0\forall x\)
\(\Rightarrow A=1,7+\left|3,4-x\right|\ge1,7\)
Dấu "=" xảy ra khi"
\(\left|3,4-x\right|=0\Rightarrow x=3,4\)
\(\Rightarrow A_{MIN}=1,7+0=1,7\)
các bn giải thik giúp mk nha
phải trả lời đầy đủ nhé( ko chỉ trả lời đáp án thôi đâu)
Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ
nên \(\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
Mình làm sai câu a...
Ta có: \(M=\dfrac{8x+1}{4x-1}=\dfrac{8x-2+3}{4x-1}=\dfrac{2\left(4x-1\right)+3}{4x-1}=2+\dfrac{3}{4x-1}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{3}{4x-1}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{3}{4x-1}\) nhận giá trị nguyên
Vì \(4x-1\in Z\) nên \(4x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{\pm0,5;0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\) thỏa mãn \(x\in Z\).
\(A=\left|3,7-x\right|+2,5\ge2,5\)
\(MinA=2,5\Leftrightarrow3,7-x=0\Rightarrow x=3,7\)
\(B=\left|x+1,5\right|+4,5\ge4,5\)
\(MinB=4,5\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
Bài 1:
a)A=0,5-|x-3,5|
Vì \(\left|x-3,5\right|\ge0\Rightarrow0,5-\left|x-3,5\right|\le0,5\)
Vậy A đạt giá trị lớn nhất khi:
0,5-|x-3,5|=0,5
=>|x-3,5|=0
=>x-3,5=0
=>x=0+3,5
=>x=3,5
Vậy giá trị lớn nhất của A là 0,5 khi x=3,5
b) B=-|1,4-x|-2
Vì \(\left|1,4-x\right|\ge0\Rightarrow-\left|1,4-x\right|-2\le-2\)
Biểu thức B đạt giá trị lớn nhất khi:
-|1,4-x|-2=-2
=>-|1,4-x|=0
=>x-1,4=0
=>x=1,4
Vậy B đạt giá trị lớn nhất là -2 khi x=1,4
Bài 2:
a) C=1,7+|3,4-x|
Vì \(\left|3,4-x\right|\ge0\Rightarrow1,7+\left|3,4-x\right|\ge1,7\)
Biểu thức C đạt giá trị nhỏ nhất khi:
1,7+|3,4-x|=1,7
=> |3,4-x|=0
=> 3,4-x=0
=> x=3,4
Vậy giá trị nhỏ nhất của C là 1,7 khi x=3,4
b) D=|x+2,8|-3,5
Vì \(\left|x+2,8\right|\ge0\Rightarrow\left|x+2,8\right|-3,5\le-3,5\)
Biểu thức D đạt giá trị nhỏ nhất khi:
|x+2,8|-3,45=-3,45
=>|x+2,8|=0
=>x+2,8=0
=>x=-2,8
Vậy D đạt giá trị nhỏ nhất là -3,5 khi x=-2,8
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
Ta có : \(-\left|x+1,2\right|\le0\forall x\)
Suy ra : \(A=-\left|x+1,2\right|+3,4\le3,4\forall x\)
Vậy \(A_{min}=3,4\) khi \(x=-1,2\)
Sorry bạn nhé bài đầu tiên bạn sửa chỗ min thành "max" nhé !
Ta có : \(\left|x+1,2\right|\ge0\forall x\)
Suy ra : B = \(\left|x+1,2\right|-3,4\ge-3,4\forall x\)
Vậy Bmin = -3,4 khi x = -1,2
Đặt:
\(X=1,7+\left|3,4-x\right|\)
\(\left|3,4-x\right|\ge0\)
\(X_{MIN}\Rightarrow\left|3,4-x\right|_{MIN}\)
\(\left|3,4-x\right|_{MIN}=0\)
\(X_{MIN}=1,7+0=1,7\)
\(S=\left|x+2,8\right|-3,5\)
\(\left|x+2,8\right|\ge0\)
\(S_{MIN}\Rightarrow\left|x+2,8\right|_{MIN}\)
\(\left|x+2,8\right|_{MIN}=0\)
\(S_{MIN}=0-3,5=-3,5\)
a)Đặt 1.7+|3.4−x|=A
\(Do\left|3,4-x\right|\ge0\forall x\)
\(\Rightarrow1,7+\left|3,4-x\right|\ge1,7\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow\left|3,4-x\right|=0\)
\(\Rightarrow x=3,4\)
Vậy GTNN của A=1,7 \(\Leftrightarrow x=3,4\)
b) Đặt |x+2.8|−3.5=B
\(Do\left|x+2,8\right|\ge0\forall x\)
\(\Rightarrow\left|x+2,8\right|-3,5\ge-3,5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+2,8\right|=0\)
\(\Rightarrow x=-2,8\)
Vậy GTNN của B =-3,5 \(\Leftrightarrow x=-2,8\)