Tìm x, y, z biết:
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4};xyz=-108\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng dãy tỉ số bằng nhau :
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-3z}{2+2.3-3.4}=\frac{-20}{-4}=5\)
\(\Rightarrow x=2.5=10\)
\(\Rightarrow y=3.5=15\)
\(\Rightarrow z=4.5=20\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}\)= 5
=> x = 5.2 = 10 ; y = 5.3 = 15 ; z = 5.4 = 20
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1,y=3k+2,z=4k+3\)
Mà x-2y+3z=-10
Hay 2k+1-2(3k+2)+3(4k+3)=-10
2k+1-6k-4+12k+9=-10
(2k-6k+12k)+(1-4+9)=-10
8k+6=-10
8k=-16
k=-2
\(\Rightarrow x=-2\cdot2+1=-3,y=-2\cdot3+2=-4,z=-2\cdot4+3=-5\)
=>(x-1)/2=(-2y+4)/-6=(3z-9)/12
=(x-1-2y+4+3z-9)/(2-6+12)
=-16/8=-2
=> (x-1)/2=-2<=>x-1=-4<=>x=-3
=>(y-2)/3=-2<=>y-2=-6<=>y=-4
=>(z-3)/4=-2<=>z-3=-8<=>z=-5
Vậy x = -3 ; y = -4 ; z = -5
Từ
\(\frac{x}{3}+\frac{y}{4}+\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
\(\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tỉ số bằng nhau . Ta có
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=\frac{1}{4}\)
\(\Rightarrow\begin{cases}x=\frac{3}{2}\\y=2\\z=\frac{5}{2}\end{cases}\)
Vậy \(x=\frac{3}{2};y=2;=\frac{5}{2}\)
Có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\)\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}\)
Áp dụng tính chất của dãy tie số bằng nhau ta có:
\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=4\)
=>\(\frac{2x^2}{18}=4\Rightarrow2x^2=18\cdot4=72\Rightarrow x^2=36\Rightarrow x=6\)
\(\frac{2y^2}{32}=4\Rightarrow2y^2=32\cdot4=128\Rightarrow y^2=64\Rightarrow y=8\)
\(\frac{3z^2}{75}=4\Rightarrow3z^2=75\cdot4=300\Rightarrow z^2=100\Rightarrow z=10\)
Đặt \(x+2y+3z=A\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)
\(\Rightarrow A=\frac{2A}{2A-9}\)
\(\Rightarrow\frac{2}{2A-9}=1\)
\(\Rightarrow2A-9=2\)
\(\Rightarrow A=\frac{11}{2}\)
Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :
\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)
\(\Rightarrow8y=44y-33\)
\(\Rightarrow36y=33\)
\(\Rightarrow y=\frac{11}{12}\)
\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)
\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)
\(\Rightarrow4x=22x-33\)
\(\Rightarrow18x=33\)
\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)
\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)
\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)
Vậy ...
Cho mình bổ sung : \(TH2:A=0\)
\(\Rightarrow2x=4y=6z=0\)
\(\Rightarrow x=y=z=0\)
Vậy ....
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=>\frac{x-1}{2}=\frac{2\left(y-2\right)}{6}=\frac{3\left(z-3\right)}{12}=>\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}=\frac{x-1-2y+4+3z-9}{8}\)
\(=\frac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
Do đó: \(\frac{x-1}{2}=1=>x-1=2=>x=3\)
\(\frac{y-2}{3}=1=>y-2=3=>y=5\)
\(\frac{z-3}{4}=1=>z-3=4=>z=7\)
Vậy x=3;y=5;z=7
=>(x-1)/2=(-2y+4)/-6=(3z-9)/12
=(x-1-2y+4+3z-9)/(2-6+12)
=-16/8=-2
=> (x-1)/2=-2<=>x-1=-4<=>x=-3
=>(y-2)/3=-2<=>y-2=-6<=>y=-4
=>(z-3)/4=-2<=>z-3=-8<=>z=-5
Đặt :
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=k\)
\(\hept{\begin{cases}x-4=2k\\y-6=3k\\z-8=4k\end{cases}\Leftrightarrow\hept{\begin{cases}x=2k+4\\y=3k+6\\z=4k+8\end{cases}}}\)
\(\Rightarrow3x+2y-3z=36\Leftrightarrow3\left(2k+4\right)+2\left(3k+6\right)-3\left(4k+8\right)=36\)
\(\Leftrightarrow6k+4+6k+6-12k+8=36\)
\(\Leftrightarrow6k+4+6k+6-6k.2+8=36\)
\(\Leftrightarrow6\left[k\left(4+6-8\right)\right].2=36\)
\(\Leftrightarrow6k.2.2=36\Leftrightarrow6k.2^2=36\)
\(\Leftrightarrow6k=9\)
\(\Rightarrow k=\frac{3}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.2+4\\y=\frac{3}{2}.3+6\\z=\frac{3}{2}.4+8\end{cases}\Leftrightarrow\hept{\begin{cases}x=3+4\\y=\frac{9}{2}+6\\z=6+8\end{cases}\Leftrightarrow}\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=7\\y=\frac{21}{2}\\z=14\end{cases}}\)
Nhớ k nha ,dù mk trả lời hơi muộn
Đặt \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\2y=3k\\3z=4k\end{cases}}\Rightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)
Khi đó xyz = -108
<=> \(2k.\frac{3}{2}k.\frac{4}{3}k=-108\)
=> 4k3 = -108
=> k3 = -27
=> k3 = (-3)3
=> k = -3
=> x = -6 ; y = -4,5 ; z = -4
Vậy x = -6 ; y = -4,5 ; z = -4 là giá trị cần tìm