\(\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Đặt \(x+2y+3z=A\)

Áp dụng tính chất của dãy tỉ số bằng nhau có :

\(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}=\frac{x+2y+2y+3z+3z+x}{x+2y+2y+3z+3z+x-3-3-3}\)

\(\Rightarrow A=\frac{2A}{2A-9}\)

\(\Rightarrow\frac{2}{2A-9}=1\)

\(\Rightarrow2A-9=2\)

\(\Rightarrow A=\frac{11}{2}\)

Cũng áp dụng tính chất của dãy tỉ số bằng nhau và có :

  • \(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)

\(=\frac{\left(x+2y\right)+\left(2y+3z\right)-\left(3z+x\right)}{\left(2y+3z-3\right)+\left(3z+x-3\right)-\left(x+2y-3\right)}=\frac{4y}{4y-3}=\frac{11}{2}\)

\(\Rightarrow2.\left(4y\right)=11.\left(4y-3\right)\)

\(\Rightarrow8y=44y-33\)

\(\Rightarrow36y=33\)

\(\Rightarrow y=\frac{11}{12}\)

  • \(A=\frac{x+2y}{2y+3z-3}=\frac{2y+3z}{3z+x-3}=\frac{3z+x}{x+2y-3}\)

\(=\frac{\left(x+2y\right)-\left(2y+3z\right)+\left(3z+x\right)}{\left(2y+3z-3\right)-\left(3z+x-3\right)+\left(x+2y-3\right)}=\frac{2x}{2x-3}=\frac{11}{2}\)

\(\Rightarrow2.\left(2x\right)=11\left(2x-3\right)\)

\(\Rightarrow4x=22x-33\)

\(\Rightarrow18x=33\)

\(\Rightarrow x=\frac{33}{18}=\frac{11}{6}\)

\(\Rightarrow3z=A-x-2y=\frac{11}{2}-\frac{11}{6}-\frac{2.11}{12}=\frac{11}{6}\)

\(\Rightarrow z=\frac{11}{6}:3=\frac{11}{18}\)

Vậy ...

28 tháng 10 2016

Cho mình bổ sung : \(TH2:A=0\)

\(\Rightarrow2x=4y=6z=0\)

\(\Rightarrow x=y=z=0\)

Vậy ....

16 tháng 3 2017

vì chứng minh 3 điểm A,G,i thẳng hàng

16 tháng 3 2017

S = 3/4000

3 tháng 12 2015

x:y:z=5:4:3=>x/5=y/4=z/3

\(\frac{x+2y-3z}{5+4.2-3.3}=\frac{x-2y+3z}{5-4.2+3.3}\Leftrightarrow\frac{x+2y-3z}{5+8-9}=\frac{x-2y+3z}{5-8+9}\)

\(\frac{x+2y-3z}{4}=\frac{x-2y+3z}{6}\Leftrightarrow\frac{x+2y-3z}{x-2y+3z}=\frac{4}{6}=\frac{2}{3}\)

\(\Rightarrow P=\frac{x+2y-3z}{x-2y+3z}+\frac{1}{3}=\frac{2}{3}+\frac{1}{3}=\frac{3}{3}=1\)

vay P=1

nhớ tick

12 tháng 10 2016

Haizz....

4 tháng 3 2020

Ta có : \(\frac{3x-2y}{4}=\frac{4y-3z}{2}=\frac{2z-4x}{3}\)

\(\Leftrightarrow\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x}{9}=\frac{12x-8y+8y-6z+6z-12x}{16+4+9}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3x-2y}{4}=0\\\frac{4y-3z}{2}=0\\\frac{2z-4x}{3}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}3x=2y\\4y=3z\\2z=4x\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{4}\\\frac{x}{2}=\frac{z}{4}\end{cases}}\) \(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x-2y+3z}{2-6+12}=\frac{8}{8}=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\\z=4\end{cases}}\)

Vậy : \(\left(x,y,z\right)=\left(2,3,4\right)\)

22 tháng 11 2017

D = \(\frac{2}{3}\) . 

22 tháng 11 2017

Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)

\(\Rightarrow x=5k\)\(y=4k\)\(z=3k\)

\(\Rightarrow D=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2\left(4k\right)-3\left(3k\right)}{5k-2\left(4k\right)+3\left(3k\right)}\)

\(D=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)

VẬY, \(D=\frac{2}{3}\)