Thực hiện phép tính:
a. 2x(x + y) - y(y + 2x)
b. \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}\)
c.\(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)
ai giúp minh với!! tối mai mình phải trả đề cương rồi!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 2x(x + y) - y(y + 2x) = 2x2 + 2xy - y2 - 2xy = 2x2 - y2
b.\(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
Phần c nản quá.
an có 10000000 quả cam an cho mẹ gấp đôi rồi an co ba số quả lớn hơn mẹ 200 vậy an còn bao nhiêu quả cam
a) \(\frac{5x-1}{3x^2y}+\frac{x-1}{3x^2y}=\frac{5x-1+x-1}{3x^2y}=\frac{6x}{3x^2y}=\frac{2}{xy}\)
b) \(\frac{7}{12xy^2}+\frac{11}{18x^3y}=\frac{7\left(\frac{3}{2}x^2\right)}{18x^3y^2}+\frac{11y}{18x^3y^2}=\frac{10,5x^2+11y}{18x^3y^2}\)
c) \(\frac{x}{x+2}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{x\left(4x-7\right)}{\left(x+2\right)\left(4x-7\right)}+\frac{7x-16}{\left(x+2\right)\left(4x-7\right)}\)
\(=\frac{4x^2-7x+7x-16}{\left(x+2\right)\left(4x-7\right)}=\frac{4x^2-16}{\left(x+2\right)\left(4x-7\right)}\)
a.\(\frac{1-3x}{2}-\frac{x+3}{2}=\frac{1-3x-x-3}{2}=\frac{1-4x-3}{2}=\frac{-4x-2}{2}=\frac{-2\left(2x+1\right)}{2}=-2x-1\)
b. \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}=\frac{2\left(x^2-y^2\right)+2y^2}{x}=\frac{2x^2-2y^2+2y^2}{x}=2x\)
c. \(\frac{3x+1}{x+y}-\frac{2x-3}{x+y}=\frac{3x+1-2x+3}{x+y}=\frac{x+4}{x+y}\)
d. \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}=\frac{xy}{2x-y}-\frac{1-x^2}{2x-y}=\frac{xy-1+x^2}{2x-y}\)
e. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}=\frac{4x-1-7x+1}{3x^2y}=\frac{-3x}{3x^2y}=\frac{-1}{xy}\)
a) 2x(x + y) - y(y + 2x)
= 2x2 + 2xy - y2 - 2xy
= 2x2 - y2
b) \(\frac{4x+3y}{7x^2y}-\frac{3x+3y}{7x^2y}=\frac{4x+3y-3x-3y}{7x^2y}=\frac{x}{7x^2y}=\frac{1}{7xy}\)
c) \(\frac{x^3-4x^2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{x-1}\)
= \(\frac{x^3-4x^2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}+\frac{x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}\)
= \(\frac{x^3-4x^2+2x-2+x^2+x+1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{x^3-3x^2+3x-1}{\left(x^2+x+1\right)\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(x^2+x+1\right)\left(x-1\right)}\)
\(=\frac{\left(x-1\right)^2}{x^2+x+1}\)