K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2020

\(S=\dfrac{1}{2018!\left(2019-2018\right)!}+\dfrac{1}{2016!\left(2019-2016\right)!}+...+\dfrac{1}{2!\left(2019-2\right)!}+\dfrac{1}{0!\left(2019-0!\right)}\)

\(\Rightarrow2019!.S=\dfrac{2019!}{2018!\left(2019-2018\right)!}+\dfrac{2019!}{2016!\left(2019-2016\right)!}+...+\dfrac{2019!}{2!\left(2019-2\right)!}+\dfrac{2019!}{0!\left(2019-0\right)!}\)

\(=C_{2019}^{2018}+C_{2019}^{2016}+...+C_{2019}^2+C_{2019}^0\)

\(=\dfrac{1}{2}\left(C_{2019}^0+C_{2019}^1+...+C_{2019}^{2018}+C_{2019}^{2019}\right)\)

\(=\dfrac{1}{2}.2^{2019}=2^{2018}\)

\(\Rightarrow S=\dfrac{2^{2018}}{2019!}\)

18 tháng 4 2020

S = 2020 + 2019 - 2018 - 2017 + 2016 + 2015 - 2014 - 2013 + ... + 4 + 3 - 2 - 1

= ( 2020 + 2019 - 2018 - 2017 ) + ( 2016 + 2015 - 2014 - 2013 ) + ... + ( 4 + 3 - 2 - 1 )   (có tất cả 2020 : 4 = 505 nhóm)

= 4 + 4 + ... + 4

= 4. 505 = 2020

Vậy S = 2020.

18 tháng 4 2020

S= 2020

Bạn huyền đúng rồi đó .

hok tốt

19 tháng 7 2023

\(...=2022+2020+\left(-2019+2016-2018+2015-2017+2014\right)+...+\left(6-3+5-2+4-1\right)\)

\(=2022+2020+\left(-3-3-3\right)+\left(-3-3-3\right)+...+\left(-3-3-3\right)+\left(-3-2-1\right)\)

\(=2022+2020+\left(-9\right)+\left(-9\right)+...\left(-9\right)+\left(-6\right)\)

\(=2022+2020+\left(-9\right).\left[\left(2019-9\right):6+1\right].\left[\left(2019+6\right)\right]:2+\left(-6\right)\)

\(=2022+2020+\left(-9\right).336.2025:2+\left(-6\right)\)

\(=2022+2020-3061800-6\)

\(=-3057764\)

23 tháng 2 2019

S=(1-2-3+4)+(5-6-7+8)+........+(2013-2014-2015+2016)+(2017-2018-2019+2020)

=0+0+0+.......+0+0=0 

15 tháng 5 2019

Để xem ai thông minh mà biết cách làm nha , bài này không khó đâu , cũng khá dễ đấy

19 tháng 3 2019

Đề thi đó

25 tháng 8 2021

\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)

25 tháng 8 2021

\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)

\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)