Cho a,b,c >0 tm abc=1, C/m
\(\dfrac{1}{\sqrt{a^5+b^2+ab+6}}+\dfrac{1}{\sqrt{b^5+c^2+bc+6}}+\dfrac{1}{\sqrt{c^5+a^2+ca+6}}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^5+b^2+ab+6\ge3a^2b+6\)
\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)
\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)
\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)
\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)
\(\Rightarrow P\le\sqrt{1}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đề bài sai, bạn kiểm tra lại điều kiện \(a^2+b^2+c^2=1\)
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)
\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)
Tương tự và cộng lại:
\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)
Lời giải:
Vì $abc=1$ nên tồn tại $x,y,z$ sao cho : \((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)
Khi đó:
\(\text{VT}=\frac{1}{\sqrt{\frac{x}{z}+\frac{x}{y}+2}}+\frac{1}{\sqrt{\frac{y}{x}+\frac{y}{z}+2}}+\frac{1}{\sqrt{\frac{z}{y}+\frac{z}{x}+2}}=\frac{\sqrt{yz}}{\sqrt{xy+xz+2yz}}+\frac{\sqrt{xz}}{\sqrt{xy+yz+2xz}}+\frac{\sqrt{xy}}{\sqrt{xz+yz+2xy}}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\text{VT}^2\leq (1+1+1)\left(\frac{yz}{xy+xz+2yz}+\frac{xz}{xy+yz+2xz}+\frac{xy}{xz+yz+2xy}\right)\)
\(\leq 3\left[\frac{yz}{4}\left(\frac{1}{xy+yz}+\frac{1}{xz+yz}\right)+\frac{xz}{4}\left(\frac{1}{xy+xz}+\frac{1}{xz+yz}\right)+\frac{xy}{4}\left(\frac{1}{xz+xy}+\frac{1}{yz+xy}\right)\right]\)
hay \(\text{VT}^2\leq \frac{3}{4}.\left(\frac{xy+yz}{xy+yz}+\frac{xy+xz}{xy+xz}+\frac{yz+xz}{yz+xz}\right)=\frac{9}{4}\)
\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$
a: \(E=1+1=2\)
b: \(=6+3\sqrt{5}+\sqrt{6}-\sqrt{2}+\sqrt{6}-\sqrt{5}\)
\(=6+2\sqrt{6}-\sqrt{2}+2\sqrt{5}\)
d: \(=2+\sqrt{3}+2-\sqrt{3}=4\)
Áp dụng bất đẳng thức Cô - si, ta có: \(a^5+b^2+ab+6\ge3\sqrt[3]{a^5.b^2.ab}+6=3a^2b+6=3\left(a^2b+2\right)\)\(\Rightarrow\frac{1}{\sqrt{a^5+b^2+ab+6}}\le\frac{1}{\sqrt{3\left(a^2b+2\right)}}\)
Tương tự rồi cộng theo vế, ta được: \(VT\le\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{a^2b+2}}+\frac{1}{\sqrt{b^2c+2}}+\frac{1}{\sqrt{c^2a+2}}\right)\)\(\le\sqrt{\frac{1}{a^2b+2}+\frac{1}{b^2c+2}+\frac{1}{c^2a+2}}=\sqrt{\frac{c}{a+2c}+\frac{a}{b+2a}+\frac{b}{c+2b}}\)\(=\sqrt{\frac{1}{2}\left(1-\frac{a}{a+2c}+1-\frac{b}{b+2a}+1-\frac{c}{c+2b}\right)}\)\(=\sqrt{\frac{3}{2}-\frac{1}{2}\left(\frac{a^2}{a^2+2ac}+\frac{b^2}{b^2+2ab}+\frac{c^2}{c^2+2bc}\right)}\)
\(\le\sqrt{\frac{3}{2}-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=1\)
Đẳng thức xảy ra khi a = b = c = 1