cho tam giác abc vuông tại a có ab= 6cm ac =8cm a tính diện tích tam giác abc b gọi m là trung điểm của ac tính diện tích tam giá bmc c gọi n là trung điểm của ab p ,q lần lượt là trung điểm của bn và cm tính diện tích tứ giác mnpq
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông ở A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có : AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}\)
hay \(\dfrac{BD}{DC}=\dfrac{6}{8}\)
\(\Rightarrow\dfrac{BD}{6}=\dfrac{DC}{8}=\dfrac{BD+DC}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
\(\Rightarrow BD=\dfrac{5}{7}.6=\dfrac{30}{7}\left(cm\right)\)
\(\Rightarrow DC=\dfrac{5}{7}.8=\dfrac{40}{7}\left(cm\right)\)
Hình bạn tự kẻ nhé!
Xét tam giác ABC vuông tại A có:
AB2 + AC2 = BC2 ( định lý Pytago )
=> 62 + 82 = BC2
<=> 36 + 64 = BC2
<=> 100 = BC2
<=> BC = 10 (cm) ( vì BC > 0 )
Xét tam giác ABC có: BD là đường pg của tam giác ABC
=> DA / DC = AB / BC
=> DA / ( DA + DC ) = AB/ ( BC + AB )
<=> DA / AC = 3/8
<=> AD / 8 = 3/8
<=> AD = 3 (cm)
Vậy AD = 3 cm.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABD vuông tại A và ΔMBD vuông tại M có
BD chung
góc ABD=góc MBD
=>ΔBAD=ΔBMD
c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có
BM=BA
góc MBE chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
a: BC=10cm
b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có
BK chung
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔABK=ΔHBK
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
c, tam giác ABC vuông tại A, có đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm
Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm
d, phải là cắt AC nhé, xem lại đề nhé bạn
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó; ΔABD=ΔEBD
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
BH=6^2/10=3,6cm
HC=10-3,6=6,4cm
d: AD là phân giác
=>DB/AB=DC/AC
=>DB/3=DC/4=10/7
=>DB=30/7cm
a: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm; CD=40/7cm
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)