K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

a) Xét ΔAEB và ΔDEC có 

AE=DE(gt)

\(\widehat{AEB}=\widehat{DEC}\)(hai góc đối đỉnh)

EB=EC(E là trung điểm của BC)

Do đó: ΔAEB=ΔDEC(c-g-c)

\(\widehat{ABE}=\widehat{DCE}\)(hai góc tương ứng)

mà \(\widehat{ABE}\) và \(\widehat{DCE}\) là hai góc ở vị trí so le trong

nên AB//DC(Dấu hiệu nhận biết hai đường thẳng song song)

b) Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EB=EC(E là trung điểm của BC)

nên E nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AE là đường trung trực của BC

hay AE⊥BC(đpcm)

c) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)(Số đo của góc ở đỉnh trong ΔABC cân tại A)

hay \(\widehat{BAC}=180^0-2\cdot45^0=90^0\)

Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì \(\widehat{ABC}=45^0\)

12 tháng 10 2021

a: Xét ΔABC và ΔAED có 

AB=AE

\(\widehat{BAC}=\widehat{EAD}\)

AC=AD

Do đó: ΔABC=ΔAED

Câu a thui

A,   Xét Tam giác ABC và Tam giác AED có

    AB=AD

   BD cạnh chung

   AC=AE

=>TAM GIÁC ABC=TAM GIÁC AED

9 tháng 12 2020

KO BT OK

9 tháng 12 2020

Trần Gia Bảo k bt thì dug ns ạ :)
 

18 tháng 12 2021

b: Xét tứ giác DECB có 

A là trung điểm của CD

A là trung điểm của EB

Do đó: DECB là hình bình hành

Suy ra: ED=BC

cảm ơn bạn nha

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm