CHO TAM GIÁC A,B,C,CÓ AB=AC. E LÀ TRUNG ĐIỂM CỦA BC , TRÊN TIA ĐỐI CỦA TIA EA LẤY ĐIỂM D SAO CHO AE = ED a.CHỨNG MINH : AB//DC b.CHỨNG MINH :AE VUÔNG BC c.TÌM ĐIỀU KIỆN CỦA TAM GIÁC A,B,C ĐỂ GÓC ABC BẰNG 45ĐỘ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔAED có
AB=AE
\(\widehat{BAC}=\widehat{EAD}\)
AC=AD
Do đó: ΔABC=ΔAED
Câu a thui
A, Xét Tam giác ABC và Tam giác AED có
AB=AD
BD cạnh chung
AC=AE
=>TAM GIÁC ABC=TAM GIÁC AED
b: Xét tứ giác DECB có
A là trung điểm của CD
A là trung điểm của EB
Do đó: DECB là hình bình hành
Suy ra: ED=BC
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
a) Xét ΔAEB và ΔDEC có
AE=DE(gt)
\(\widehat{AEB}=\widehat{DEC}\)(hai góc đối đỉnh)
EB=EC(E là trung điểm của BC)
Do đó: ΔAEB=ΔDEC(c-g-c)
⇒\(\widehat{ABE}=\widehat{DCE}\)(hai góc tương ứng)
mà \(\widehat{ABE}\) và \(\widehat{DCE}\) là hai góc ở vị trí so le trong
nên AB//DC(Dấu hiệu nhận biết hai đường thẳng song song)
b) Ta có: AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: EB=EC(E là trung điểm của BC)
nên E nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE là đường trung trực của BC
hay AE⊥BC(đpcm)
c) Xét ΔABC có AB=AC(gt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)(Số đo của góc ở đỉnh trong ΔABC cân tại A)
hay \(\widehat{BAC}=180^0-2\cdot45^0=90^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì \(\widehat{ABC}=45^0\)