Cho \(a^{^{ }3}-3ab^2=5\)và \(b^3-3a^2b=10\). Tính giá trị biểu thức \(P=a^2+b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....
\(\hept{\begin{cases}\left(a^3-3ab^2\right)^2=25\\\left(b^3-3a^2b\right)^2=100\end{cases}}\Leftrightarrow\hept{\begin{cases}a^6-6a^4b^2+9a^2b^4=25\\b^6-6a^2b^4+9a^4b^2=100\end{cases}}\)
Cộng 2 đẳng thức lại ta được:
\(a^6+3a^4b^2+3a^2b^4+b^6=125\Leftrightarrow\left(a^2+b^2\right)^3=125\Leftrightarrow a^2+b^2=5\)
\(\Rightarrow P=2018\left(a^2+b^2\right)=2018.5=...\)
Ta có : \(a^3-3ab^2=5\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=a^6-6a^4b^2+9a^2b^4=25\)
Và \(b^3-3a^2b=10\)
\(\Rightarrow\left(b^3-3a^2b\right)^2=b^6-6a^4b^2+9a^4b^2=100\)
Suy ra : \(a^6++3a^2b^4+3a^4b^2+b^6=125\)
Hoặc : \(\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Do đó : \(P=2018a^2+2018b^2=2018\left(a^2+b^2\right)=2018.5=10090\)
Có : (a^3-3ab^2)^2 = 5^2 = 25
<=> a^6-6a^4b^2+9a^2b^2 = 25
(b^3-3a^2b)^2 = 10^1 = 100
<=> b^6-6a^2b^4+9a^4b^2 = 100
=> 5^3 = 125 = 25 + 100 = a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2 = a^6+b^6+3a^2b^4+3a^4b^2 = (a^2+b^2)^3
=> a^2+b^2 = 5
=> D = 312018.(a^2+b^2) = 312018 . 5 = 1560090
Tk mk nha
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Theo bài ra ta có :
\(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)
\(=233^2+2010^2\)
\(\Rightarrow\left(a^2+b^2\right)^3=4094389\)
\(\Rightarrow a^2+b^2=\sqrt[3]{4094389}\)
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
Ta có:\(\left(a^3-3ab^2\right)^2=5^2\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=25\)
\(\left(b^3-3a^2b\right)^2=10^2\)
\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=100\)
\(\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2=25+100\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4+a^6-6a^2b^4+9a^4b^2=125\)
\(\Leftrightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=5^3\)
\(\Leftrightarrow a^2+b^2=5\)
\(\)