Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
a) Ta có: \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\)
\(=x^4+x^3y-x^3y-x^2y^2+x^2y^2+xy^3-xy^3-y^4\)
\(=x^4-y^4\)
Thay x=2 và \(y=-\frac{1}{2}\) vào biểu thức \(A=x^4-y^4\), ta được:
\(A=2^4-\left(-\frac{1}{2}\right)^4\)
\(=16-\frac{1}{16}\)
\(=\frac{255}{16}\)
Vậy: \(\frac{255}{16}\) là giá trị của biểu thức \(A=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)\) tại x=2 và \(y=-\frac{1}{2}\)
b) Ta có: \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\)
\(=a^5+a^4b+a^3b^2+a^2b^3+ab^4-a^4b-a^3b^2-a^2b^3-ab^4-b^5\)
\(=a^5-b^5\)
Thay a=3 và b=-2 vào biểu thức \(B=a^5-b^5\), ta được:
\(B=3^5-\left(-2\right)^5\)
\(=243-\left(-32\right)\)
\(=243+32=275\)
Vậy: 275 là giá trị của biểu thức \(B=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\) tại a=3 và b=-2
c) Ta có: \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\)
\(=x^4+x^2y^2-2x^3y-2xy^3+2x^2y^2+2y^4+2x^3-3x^2y^2+2xy^3\)
\(=x^4-2x^3y+2y^4+2x^3\)
Thay \(x=y=\frac{-1}{2}\) vào biểu thức \(C=x^4-2x^3y+2y^4+2x^3\), ta được:
\(C=\left(-\frac{1}{2}\right)^4-2\cdot\left(-\frac{1}{2}\right)^3\cdot\frac{-1}{2}+2\cdot\left(-\frac{1}{2}\right)^4+2\cdot\left(-\frac{1}{2}\right)^3\)
\(=\frac{1}{16}-2\cdot\frac{-1}{8}\cdot\frac{-1}{2}+2\cdot\frac{1}{16}+2\cdot\frac{-1}{8}\)
\(=\frac{1}{16}-\frac{1}{8}+\frac{1}{8}-\frac{1}{4}\)
\(=\frac{1}{16}-\frac{1}{4}=\frac{1}{16}-\frac{4}{16}=\frac{-3}{16}\)
Vậy: \(-\frac{3}{16}\) là giá trị của biểu thức \(C=\left(x^2-2xy+2y^2\right)\left(x^2+y^2\right)+2x^3-3x^2y^2+2xy^3\) tại \(x=y=\frac{-1}{2}\)
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)
2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)
\(=25\left(a-b\right)^2=25\cdot100=2500\)