K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

- Để phương trình trên có hai nghiệm trái dấu

\(\Leftrightarrow ac< 0\)

\(\Leftrightarrow m\left(m-4\right)< 0\)

\(\Leftrightarrow m^2-4m< 0\)

\(\Leftrightarrow0< m< 4\)

Vậy ...

 

19 tháng 2 2021

Phương trình có 2 nghiệm trái dấu khi $ac<0$ hay \(m\left( {m - 4} \right) < 0 \Leftrightarrow 0 < m < 4\)

 

NV
29 tháng 1 2024

Bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(1-m\right)>0\\x_1x_2=-2m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>-\dfrac{5}{2}\end{matrix}\right.\)

\(\Rightarrow-\dfrac{5}{2}< m< 1\)

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

24 tháng 6 2021

Pt có 2 nghiệm trái dấu

`<=>ac<0`

`<=>2m+1>0`

`<=>m> -1/2`

Để pt(1) có hai nghiệm trái dấu thì -(2m+1)<0

\(\Leftrightarrow2m+1>0\)

\(\Leftrightarrow2m>-1\)

hay \(m>-\dfrac{1}{2}\)

21 tháng 4 2015

1.delta = (-m)2    -  4 ( 2m - 3 ).1  =m2  - 8m  + 12 Để phương trình có nghiệm thì delta >= 0 

giải bất phương trình:  m2 - 8 m + 12 >=0  <=> (m-6) (m-2) >=0 => m> 6 hoặc m<2

3. delta >=0 thì phương rình có 2 nghiệm x 1,  x2 

 theo viet x1 + x2 = m
              x1 . x2 = 2m-3

ta có   x1+ x22 = (x1 + x2) 2 - 2 x1. x2 = m2 - 2.(2m-3) = m2  -4m + 6

2.  m=0 thì phải ???

 mk viết thôi, chưa có suy nghĩ và khảo kĩ.. sai mong thông cảm

 

30 tháng 6 2020

a

Ta có:

\(\Delta'=m^2-\left(2m-3\right)=m^2-2m+3=\left(m-1\right)^2+2>0\)

Nên phương trình luôn có 2 nghiệm phân biệt với mọi m

b

Phương trình có 2 nghiệm trái dấu thì \(2m-3< 0\Leftrightarrow m< \frac{3}{2}\)

Vậy .....................

Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)

\(\Leftrightarrow m^2+2m< 0\)

\(\Leftrightarrow m^2+2m+1< 1\)

\(\Leftrightarrow\left(m+1\right)^2< 1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)

Ta có: \(\Delta'=1>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét: \(x_1x_2=m^2+2m\)

Để phương trình có 2 nghiệm trái dấu 

\(\Leftrightarrow m^2+2m< 0\) \(\Leftrightarrow-2< m< 0\)

Vậy để phương trình có 2 nghiệm trái dấu thì \(-2< m< 0\)