Ghép phân số với tỉ số phần trăm bằng nó:
30% 25%50%Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 17/7 : 21/34
= 17 x 7 x 3/ 7 x 17 x 2
Gạch 7,17 ta được 3/2
Vậy tỉ số là 150%
k nha !!!
\(2\frac{3}{7}=\frac{17}{7}\)
\(1\frac{13}{21}=\frac{34}{21}\)
Tỉ Số Phần Trăm Là: \(\frac{17}{7}.100:\frac{34}{21}=150\)
~Chúc Bạn Học Tốt~
Đặt A = \(\frac{10^{20}+1}{10^{21}+1}\)
=> 10A = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Đặt B = \(\frac{10^{21}+1}{10^{22}+1}\)
=> 10B = \(\frac{10^{22}+10}{10^{22}+1}=1+\frac{9}{10^{22}+1}\)
Vì \(\frac{9}{10^{21}+1}>\frac{9}{10^{22}+1}\)
=> \(1+\frac{9}{10^{21}+1}>1+\frac{9}{10^{22}+1}\)
=> 10A > 10B
=> A > B
1.Giải:
Gọi 4 phần chia là \(a,b,c,d\)
Theo đề bài ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{4}=\frac{c}{5}\Leftrightarrow\frac{a}{8}=\frac{b}{12};\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15};\frac{c}{6}=\frac{d}{7}\Leftrightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30};\frac{c}{30}=\frac{d}{35}\Rightarrow\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}\)
Áp dụng tính chất của dãy tỉ số "=" nhau , ta có:
\(\frac{a}{16}=\frac{b}{24}=\frac{c}{30}=\frac{d}{35}=\frac{a+b+c+d}{16+24+30+35}=\frac{210}{105}=2\)
\(\Rightarrow\left[\begin{matrix}a=16.2=32\\b=24.2=48\\c=30.2=60\\d=35.2=70\end{matrix}\right.\)
Đề bài sai rồi phải là: \(\frac{41}{20}\) chứ.
Gọi phân số cần tìm là \(\frac{a}{b}\), ta có:
\(\frac{a}{b}+\frac{b}{a}=\frac{41}{20}\)
Ta thấy: \(\frac{a}{b}.\frac{b}{a}=1\)
Đặt \(\frac{a}{b}-\frac{b}{a}=k\)
\(\Rightarrow\frac{a}{b}=\frac{\frac{41}{20}+k}{2};\frac{b}{a}=\frac{\frac{41}{20}-k}{2}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{a}=\frac{\left(\frac{41}{20}+k\right)\left(\frac{41}{20}-k\right)}{4}\)
\(\Rightarrow\left(\frac{41}{20}\right)^2-k^2=4\)
\(\Rightarrow\frac{1681}{400}-k^2=\frac{1600}{400}\)
\(\Rightarrow k^2=\frac{81}{400}\)
\(\Rightarrow k=\frac{9}{20}\)
Vậy: Phân số cần tìm là:
\(\left(\frac{41}{20}+\frac{9}{20}\right)\div2=\frac{5}{4}\)
Đáp số:\(\frac{5}{4}\)
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
Đặt: \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(=\frac{1-\left[\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right]}{1-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}\)
\(=\frac{1-\frac{99}{1}}{1-\frac{1}{100}}\)
\(M=\frac{-98}{99}\)
Đặt \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(=\frac{92+\left[\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right]}{1-\left[\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right]}\)
\(=\frac{92+\frac{92}{100}}{1-\frac{1}{500}}\)
\(=\frac{92+\frac{92}{100}}{\frac{499}{500}}\)
Tự làm tiếp đi!