Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Câu trả lời này ko phải của mik mà là của một bạn đã trả lời của bài toán này vào năm 2019. Nhớ vote mik nhé ^^
a: Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
a)Vì A đối xứng với D qua M=>AM=MD
Ta có:BM=MC
=>BDCA là hình bình hành(hai đường chéo cắt nhau tại trung điểm của mỗi đường)
=>BD=AC(hai cạnh đối = nhau của hbh)
b)Xét tam giác AED có:EH=HA,MD=MA
=>HM là đường trung bình của tam giác AED
=>HM//ED hay ED//BC
=>EDBC là hình thang
Vì BDCA là hình bình hành=>BA//CD
=>góc ABC=góc BCD(2 góc so le trong)
Xét tam giác ABE có:BH là đường cao đồng thời là trung tuyến
=>Tam giác ABE cân tại B
=>góc ABC=góc HBE(vì BH là tia phân giác)
Mà ABC=BCD=>BCD=HBE
=>BEDC là hình thang cân
c)Vì HD//Ax hay HD//AI
=>góc HDA=góc DAI(so le trong)
Xét tam giác HMD và tam giác MIA có:
HMD=AMI
HDA=DAI
HM=MI
=>HD=AI(hai cạnh tương ứng)
Mà HD//AI,HD=AI
=>HDIA là hình bình hành(hai cạnh đối // và = nhau)
=>AH=DI
Mà AH=HE=>DI=HE
a: Xét tứ giác AHCE có
D là trung điểm chung của aC và HE
=>AHCE là hình bình hành
Hình bình hành AHCE có \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b:Ta có: AHCE là hình bình hành
=>AE//CH và AE=CH
=>AE//IH
Xét tứ giác AEHI có
AE//HI
AI//EH
Do đó: AEHI là hình bình hành
c: Ta có: AEHI là hình bình hành
=>AE=HI
mà AE=HC
nên HI=HC
=>H là trung điểm của CI
Xét tứ giác ACKI có
H là trung điểm chung của AK và CI
=>ACKI là hình bình hành
Hình bình hành ACKI có AK\(\perp\)CI
nên ACKI là hình thoi
a: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔHDB=ΔHEC
b: Ta có: ΔHDB=ΔHEC
nên BD=EC
Ta có: AD+DB=AB
AE+EC=AC
mà BD=CE
và AB=AC
nên AD=AE
a) Xét ΔAEC có
H là trung điểm của EC(E và C đối xứng với nhau qua H)
D là trung điểm của AC(gt)
Do đó: HD là đường trung bình của ΔAEC(Định nghĩa đường trung bình của tam giác)
⇒HD//AE và \(HD=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)
b) Ta có: HD//AE(cmt)
mà I∈HD(gt)
nên AE//IH
Ta có: AI//BC(gt)
mà H∈BC
và E∈BC
nên AI//EH
Xét tứ giác AEHI có
AI//EH(cmt)
AE//HI(cmt)
Do đó: AEHI là hình bình hành(Dấu hiệu nhận biết hình bình hành)