cho góc XOY khác góc bẹt,OZ là tia phân giác của góc đó. Qua điểm M thuộc tia OZ, kẻ MA vuông góc vs OX A thuộc OX ,MB vuông góc vs OY B thuộc OY a, chứng minh tam giác OMA tam giác OMBb,tia AM cắt tia OY tại C, tia BM cắt tia OX tại D. Cm OC Odc, CM OM vuông góc vs CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có MA vuông với Ox => OAM = 180*-90*=90* MB vuông với Oy => OBM = 180*-90*=90* => OAM=OBM Vì Oz là phân giác của góc O nên AOM = MOB +) Xét tam giác OAM và tam giác OBM OAM=OBM AOM=MOB OM là cạnh chung => tam giác OAM=tam giác OBM
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOAM=ΔOBM
=>MA=MB
Xét ΔMAF vuông tại A và ΔMBE vuông tại B có
MA=MB
\(\widehat{AMF}=\widehat{BME}\)
Do đó: ΔMAF=ΔMBE
=>MF=ME
b:
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(1)
Ta có: MA=MB
=>M nằm trên đường trung trực của BA(2)
Từ (1) và (2) suy ra OM là đường trung trực của BA
=>OM\(\perp\)BA
A .
Vì OA // MB ( giả thuyết )
=> Góc AOM = Góc OMB ( 1 )
Vì AM = OB ( giả thuyết )
=> Góc AMO = Góc MOB ( 2 )
Từ ( 1 ) và ( 2 )
=> Góc AOM = Góc MOB ; Góc AMO = Góc BMO
Vậy hình tam giác AMO = Hình tam giác BMO ( góc - cạnh - góc )
= > AO = OB ; MA = MB ( 2 cạnh tương ứng )