K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

undefined

Ta có MA vuông với Ox  => OAM = 180*-90*=90* MB vuông với Oy => OBM = 180*-90*=90* => OAM=OBM Vì Oz là phân giác của góc O nên AOM = MOB +) Xét tam giác OAM và tam giác OBM OAM=OBM AOM=MOB OM là cạnh chung => tam giác OAM=tam giác OBM

11 tháng 12 2020

undefined hình phần b nha mik chưa đủ thời gian làm được

a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có

OM chung

\(\widehat{AOM}=\widehat{BOM}\)

Do đó: ΔOAM=ΔOBM

=>MA=MB

Xét ΔMAF vuông tại A và ΔMBE vuông tại B có

MA=MB

\(\widehat{AMF}=\widehat{BME}\)

Do đó: ΔMAF=ΔMBE

=>MF=ME

b:

Ta có: OA=OB

=>O nằm trên đường trung trực của BA(1)

Ta có: MA=MB

=>M nằm trên đường trung trực của BA(2)

Từ (1) và (2) suy ra OM là đường trung trực của BA

=>OM\(\perp\)BA 

19 tháng 3 2018

a) Xét tam giác vuông AOM và tam giác vuông BƠM có:

Cạnh huyền AM chung

\(\widehat{AOM}=\widehat{BOM}\) (gt)

\(\Rightarrow\Delta AOM=\Delta BOM\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow MA=MB;OA=AB\)hay tam giác OAB cân tại O.

b) Xét tam giác vuông AMD và tam giác vuông BME có:

AM = BM

\(\widehat{AMD}=\widehat{BME}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMD=\Delta BME\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow MD=ME\)

c) Ta thấy OA = OB; AD = BE nên OD = OE

Vậy thì \(\Delta ODI=\Delta OEI\left(c-g-c\right)\)

\(\Rightarrow\widehat{OID}=\widehat{OIE}\)

Chúng lại là hai góc kề bù nên \(\widehat{OID}=\widehat{OIE}=90^o\) hay MO vuông góc DE.

24 tháng 3 2020

c, cm : OM la trung truc cua DE . ai giup mik voii 

O x y M B A E D Z

Bài làm

a) Xét tam giác AOM và tam giác OBM có:

\(\widehat{OAM}=\widehat{OBM}=90^0\)

Cạnh huyền: OM chung

Góc nhọn: \(\widehat{MOA}=\widehat{MOB}\)( Vì OM là tia phân giác của góc xOy )

=> Tam giác AOM = tam giác OBM ( cạnh huyền - góc nhọn )

=> MA = MB ( hai cạnh tương ứng ) 

b) Vì tam giác OAM = tam giác OBM ( Theo câu a )

=> OA = OB ( hai cạnh tương ứng )

=> Tam giác OAB cân tại O

c) Xét tam giác EBM và tam giác DAM có:

\(\widehat{EBM}=\widehat{DAM}=90^0\)

BM = MA ( chứng minh trên )

\(\widehat{EMB}=\widehat{AMD}\)( hai góc đối đỉnh )

=> Tam giác EBM = tam giác DAM ( g.c.g )

=> ME = MD ( hai cạnh tương ứng )

d) Vì tam giác EBM = tam giác DAM ( theo câu d )

=> BE = AD ( hai cạnh tương ứng )

Ta có: OB + BE = OE 

           OA + AD = OD

Mà OA = OB ( tam giác OAB cân tại O )

      BE = AD ( chứng minh trên )

=> OE = OB

Gọi gia điểm của Om và ED là Z

Xét tam giác OZE và tam giác OZD có:

OE = OB ( cmt )

\(\widehat{EOZ}=\widehat{ZOD}\)( OM là tia phân giác của góc xOy )

Cạnh OZ chung

=> Tam giác OZE = tam giác OZD ( c.g.c )

=> \(\widehat{OZE}=\widehat{OZD}\)( Hai góc tương ứng )

Ta có: \(\widehat{OZE}+\widehat{OZD}=180^0\)

Mà \(\widehat{OZE}=\widehat{OZD}\)

=> \(\widehat{OZE}=\widehat{OZD}=\frac{180^0}{2}=90^0\)

=> OZ vuông góc với ED

Hay OM vuông góc với ED ( đpcm )

# CHúc bạn học tốt #

7 tháng 9 2019

a) Dễ dàng chứng minh được hai tam giác \(\Delta OAM=\Delta OBM\left(ch-gn\right)\)

Thật vậy có :

+) OM chung 

+) \(\widehat{AOM}=\widehat{BOM}\)

Suy ra có hai cạnh tương ứng là MA = MB 

b) Tam giác OAB là tam giác cân tại O vì có OA = OB \(\left(\Delta OAM=\Delta OBM\right)\)

c) Xét hai tam giác vuông \(OBD\)và \(OAE\)

+) OB = OA 

+) Chung góc \(\widehat{AOB}\)

Vậy hai tam giác trên bằng nhau theo : \(\Delta OBD=\Delta OAE\)(cgv - gn kề cgv)

Suy ra OD = OE mà OA = OB nên OD - OA = OE - OB hay AD = BE

Và góc ODB = góc OEA (hai góc tương ứng)

Từ đó suy ra được hai tam giác DAM = tam giác EBM ( cgv - gn kề cgv)

+) AD = BE

+) góc ADM = góc BEM 

Suy ra MD = ME ( hai cạnh tương ứng)