CMR trong 5 người tùy ý luôn tìm dược 2 người có cùng số người quen nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phòng 0: Chứa những người không có người quen
Phòng 1: Chứa những người có 1 người quen
Thực chất 5 người chứa trong 4 phòng.
Nếu sai thì sửa giúp mk
Có 5 người nên số người quen nhiều nhất của mỗi người là 4.
Phòng 0: Chứa những người không có người quen.
Phòng 1: Chứa những người có 1 người quen.
………………………………………………………
Phòng 4: Chứa những người có 4 người quen.
Để ý rằng phòng 0 & phòng 4 không thể cùng có người.
Thực chất 5 người chứa trong 4 phòng.
Theo nguyên lý Dirichlet tồn tại một phòng chứa ít nhất 2 người. Từ đó có điều phải chứng minh.
Số người quen của mỗi người trong phòng họp nhận các giá trị từ 0 đến n–1. Rõ ràng trong phòng không thể đồng thời có người có số người quen là 0 (tức là không quen ai) và có người có số người quen là 10–1 (tức là quen tất cả). Vì vậy theo số lượng người quen, ta chỉ có thể phân n người ra thành 10–1 nhóm.
Vậy theo nguyên lí Dirichlet tồn tai một nhóm có ít nhất 2 người, tức là luôn tìm được ít nhất 2 người có số người quen là như nhau. (đpcm)
Bài 1:
Các đại biểu tương ứng với 6 điểm A, B, C, D, E, F. Hai đại biểu X và Y nào đó mà quen nhau thì ta tô đoạn thẳng XY bằng màu xanh còn nếu X vá Y không quen nhau thì tô đoạn XY màu đỏ.
Xét 5 đoạn thẳng AB, AC, AD, AE, AF: Theo nguyên tắc Dirichlet thì tồn tại ba đoạn cùng màu. Giả sử AB, AC, AD màu xanh. Xét ba điểm B, C, D: vì 3 đại biểu nào cũng có hai người quen nhau suy ra một trong ba đoạn BC, CD, DB màu xanh.
Giả sử BC màu xanh thì A, B, C đôi một quen nhau.
Còn nếu AB, AC, AD màu đỏ thì B, C, D đôi một quen nhau.
Theo nguyên lý Di-rich-le ta suy ra: Tồn tại hai số trong 20 số khi chia cho 19 có cùng số dư. Suy ra hiệu của hai số đó chia hết cho 19.
Giả sử 10n, 10m là hai số có cùng số dư khi chia cho 19 (1 ≤ n < m ≤ 20).
- 10m – 10n ⋮ 19
- 10n.(10m-n – 1) ⋮ 19, mà 10n không chia hết cho 19 nên suy ra:
10m-n – 1 ⋮ 19
- 10m-n – 1 = 19k (k ∈ N)
- 10m-n = 19k + 1 (đpcm).