Tìm GTLN và GTNN của phân số \(\frac{a+b}{ab}\)
ab là một số có 22 chữ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất \(\Rightarrow\)\(1+\frac{b}{a}\)lớn nhất \(\Rightarrow\frac{b}{a}\)lớn nhất \(\Rightarrow\)b lớn nhất , a nhỏ nhất
\(\Rightarrow\)b = 9 ; a = 1
Vậy \(A_{min}=\frac{19}{1+9}=1,9\)
ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)
Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)
Vậy \(2007\le ab+2009\le2011\)
\(A=\frac{1}{1+\frac{b}{a}+\left(\frac{b}{a}\right)^2}=\frac{1}{t^2+t+1}\) (chia cả tử và mẫu cho a2 rồi đặt \(t=\frac{b}{a}\))
Khi đó \(\frac{1}{2}\le t\le2\)
Ta có:
+) \(t\left(t-\frac{1}{2}\right)\ge0\Rightarrow t^2\ge\frac{1}{2}t\Rightarrow A=\frac{1}{t^2+t+1}\le\frac{1}{\frac{3}{2}t+1}\le\frac{1}{\frac{3}{2}.\frac{1}{2}+1}=\frac{4}{7}\)
Đẳng thức xảy ra khi ...
Vậy..
+) \(t\left(t-2\right)\le0\Rightarrow t^2\le2t\Rightarrow A=\frac{1}{t^2+t+1}\ge\frac{1}{3t+1}\ge\frac{1}{3.2+1}=\frac{1}{7}\)
Đẳng thức xảy ra khi ...
Vậy..
P/s: Em ko chắc!
Đúng rồi nha còn một cách nữa là biến đổi tương đương nha mn
Ta có:\(A=\frac{\overline{ab}}{a+b}=\frac{10a+b}{a+b}=\frac{a+b+9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A có giá trị nhỏ nhất suy ra \(\frac{9}{1+\frac{b}{a}}\) có giá trị nhỏ nhất
\(\Rightarrow1+\frac{b}{a}\) có giá trị lớn nhất
\(\Rightarrow\frac{b}{a}\) có giá trị lớn nhất
Mà b;a là các chữ số nên b=9,a=1