K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2020

Ta có: 

\(\overrightarrow{u}=\overrightarrow{i}+3\overrightarrow{j}=\overrightarrow{u}=\left(1;3\right)\\ \Rightarrow\overrightarrow{u}.\overrightarrow{v}=\left(1;3\right).\left(2;-1\right)=1.2+3.\left(-1\right)=-1\)

 

17 tháng 1 2019

1 tháng 1 2020

17 tháng 12 2018

Bài 1

\(\overrightarrow{a}.\overrightarrow{b}=2.\left(-1\right)+\left(-3\right).\left(-4\right)=10\)

Bài 2

Đường thẳng y = ax + b đi qua hai điểm A(1;2) và B (0;3) , ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=2\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

Vậy Pt có dạng \(y=-x+3\)

Bài 3

Ta có (P) và (D) giao điểm thì P=D

\(x^2-4x+1=x-5\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=3\Rightarrow y=-2\\x=2\Rightarrow y=-3\end{matrix}\right.\)

Vậy (P) và (D) giao điểm tại A(3;-2) và B(2;-3)

Bài 4

\(\overrightarrow{AB};\overrightarrow{FD}\)

Bài 5

ta có \(\overrightarrow{u}=\left(2;-3\right)\)\(\Rightarrow\)\(3\overrightarrow{u}=\left(2.3;\left(-3\right).3\right)=\left(6;-9\right)\)

Bài 6

\(C\in Ox\Rightarrow C\left(x;0\right)\)

\(\overrightarrow{\left|AB\right|}=\sqrt{2^2+2^2}=2\sqrt{2}\)

\(\overrightarrow{\left|AC\right|}=\sqrt{x^2+2x+5}\)

Để tam giác ABC cân tại A thì AB=AC

\(\sqrt{X^2+2X+5}=2\sqrt{2}\Rightarrow X^2+2X+1=0\Leftrightarrow X=-1\)

Vậy để tam giác ABC cân tại A thì C(-1;0)

17 tháng 12 2018

hay

NV
15 tháng 12 2020

\(\overrightarrow{v}=\left(3;-m\right)\)

Hai vecto đã cho cùng phương khi và chỉ khi:

\(\dfrac{3}{-2}=\dfrac{-m}{1}\Leftrightarrow m=\dfrac{3}{2}\)

NV
3 tháng 10 2019

\(\overrightarrow{a}=2\overrightarrow{i}-4\overrightarrow{j}\Rightarrow\overrightarrow{a}=\left(2;-4\right)\)

\(\overrightarrow{b}=-5\overrightarrow{i}+3\overrightarrow{j}\Rightarrow\overrightarrow{b}=\left(-5;3\right)\)

\(\Rightarrow\overrightarrow{u}=2\overrightarrow{a}-\overrightarrow{b}=2\left(2;-4\right)-\left(-5;3\right)=\left(9;-11\right)\)

NV
3 tháng 10 2019

\(\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}\Rightarrow\overrightarrow{v}=\left(3;-m\right)\)

Để \(\overrightarrow{u};\overrightarrow{v}\) cùng phương:

\(\Leftrightarrow\frac{3}{-2}=\frac{-m}{1}\Rightarrow m=\frac{3}{2}\)