Cho tam giác ABC nhọn có AB = AC, H là trung điểm của BC . Từ H kẻ HE vuông góc với AB tai E, HF vuông góc AC tại F a) CMR: tam giác ABH = tam giác ACHb) CNR: tam giác AHE = tam giác AHF c) Gọi M là giao điểm của đường thẳng AB và đường thẳng HF, N là giao điểm của đường thẳng AC là đường thẳng HE. CMR ME=NF, MF=NEd)CMR È song song MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có \(\Delta\)ABC cân tại A(AB=AC)
mà AH là đường trung tuyến(H là trung điểm BC)
nên AH là đường cao,đường phân giác,đường trung trực
xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH(ah là đường cao) có:
AB=AC(gt)
AH là cạnh chung
nên \(\Delta\)ABH=\(\Delta\)ACH
b)xét \(\Delta\)vuông AHE và \(\Delta\)vuông AHF có
AH là cạnh chung
góc EAH=góc FAH(AH là đường phân giác)
nên \(\Delta\)AHE=\(\Delta\)AHF
c)xét \(\Delta\)AEN và \(\Delta\)AFM có
AE=AF(\(\Delta\)AHE=\(\Delta\)AHF)
góc EAH=góc FAH(AH là đường phân giác)
góc NEA=góc MFA(\(\Delta\)AHE=\(\Delta\)AHF)
nên \(\Delta\)AEN=\(\Delta\)AFM
nên AM=AN
mà AE=AF
nên ME=NF(chứng minh xong)
xét \(\Delta\)MEN và \(\Delta\)MFN có
ME=NF
EF là cạnh chung
góc FME=góc ENF(\(\Delta\)AEN=\(\Delta\)AFM)
nên \(\Delta\)MEN=\(\Delta\)MFN
nên MF=NE
d)ta có \(\Delta\)AMN cân tại A(AM=AN)
nên góc AMN=góc ANM
mà góc AEN=góc AFM(\(\Delta\)AEN=\(\Delta\)AFM)
nên góc ENM=góc FMN
nên 2 góc HMN=góc ENM+góc FMN
ta có \(\Delta\)HEF cân tại H(HE=HF)
nên góc HEF=góc HFE=2 góc HFE
ta có 2 góc HEF+góc EHF=2 góc HMN+góc MHN=180 độ
mà góc EHF=góc MHN(đối đỉnh)
nên 2 góc HMN=2 góc HEF
nên góc HMN=góc HEF
mà 2 góc này ở vị trí slt
nên EF//MN
a: Xét ΔABH và ΔACH có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra: HE=HF
hay ΔHEF cân tại H
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>AE=AF
=>ΔAEF cân tại A
mà AI là phân giác
nên AI là trung tuyến
cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc
a, xét tam giác ABH và tam giác ACH có AH chung
góc AHC = góc AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACH (ch-cgv)
b, ta giác ABH = tam giác ACH (câu a)
=> HB = HC (đn)
xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác BHF = tam giác CHE (ch-gn)
=> BF = CE (đn)
AB = AC (câu a)
BF + FA = AB
CE + AE = AC
=> FA = AE
=> tam giác AFE cân tại A (đn)
c, tam giác AFE cân tại A (Câu b)
=> góc AFE = (180 - góc BAC) : 2 (tc)
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)
=> góc AFE = góc ABC mà 2 góc này đồng vị
=> FE // BC (định lí)
1: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
2: Ta có: H là trung điểm của BC
=>\(HB=HC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=64\)
=>\(HA=\sqrt{64}=8\left(cm\right)\)
3: Xét ΔAHN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔAHN cân tại A
=>AH=AH
4: Xét ΔAHM có
AE là đường trung tuyến
AE là đường cao
Do đó: ΔAHM cân tại A
=>AM=AH
Ta có: ΔAHN cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAN
=>\(\widehat{HAN}=2\cdot\widehat{HAC}\)
Ta có: ΔAHM cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAM
=>\(\widehat{HAM}=2\cdot\widehat{HAB}\)
Ta có: AM=AH
AH=AN
Do đó: AM=AN
Ta có: \(\widehat{HAM}+\widehat{HAN}=\widehat{MAN}\)
=>\(\widehat{MAN}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{MAN}=2\cdot\widehat{BAC}\)
Để A là trung điểm của MN thì AM=AN và góc MAN=180 độ
=>góc MAN=180 độ
=>\(2\cdot\widehat{BAC}=180^0\)
=>\(\widehat{BAC}=90^0\)
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung