Cho nửa đường tròn (O) đường kính AB. Điểm C di chuyển trên một nửa đường tròn. Qua B và C kẻ các tiếp tuyến với nửa đường tròn, các tiếp tuyến đó cắt nhau tại D. Qua O kẻ đường thẳng song song với BC, đường thẳng này cắt tiếp tuyến tại B và C lần lượt ở E và G.
a, Chứng minh BC vuông góc với OD
b, Chứng minh OG=OE
c, Chứng minh AG là tiếp tuyến của nửa đường tròn (O). Tìm vị trí của điểm C trên nửa đường tròn để diện tích tam giác GED đạt giá trị nhỏ nhất?
GIÚP MIK VS Ạ!
MIK CẢM ƠN TRC Ạ!!!
a: Xét (O) có
DB,DC là tiếp tuyến
=>DB=DC
DB=DC
OB=OC
Do đó: OD là đường trung trực của BC
=>OD vuông góc BC
b: Xét (O) có
DB,DC là tiếp tuyến
Do đó: DO là phân giác của góc CDB
BC//GE
DO vuông góc BC
Do đó: DO vuông góc GE
Xét ΔDGE có
DO vừa là đường cao, vừa là đường phân giác
Do đó: ΔDGE cân tại D
=>DG=DE
ΔDGE cân tại D
mà DO là đường cao
nên O là trung điểm của GE
=>OG=OE
c: OG//BC
=>góc AOG=góc ABC(đồng vị) và góc COG=góc OCB(hai góc so le trong)
mà góc ABC=góc OCB
nên góc AOG=góc COG
=>OG là phân giác của góc COA
Xét ΔOCG và ΔOAG có
OC=OA
góc COG=góc AOG
OG chung
Do đó: ΔOCG=ΔOAG
=>góc OAG=góc OCG=90 độ
=>AG là tiếp tuyến của (O)