K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

\(A=\frac{2}{x}+\frac{3}{x+2}+\frac{x-4}{x^2+2x}\)

\(=\frac{2}{x}+\frac{3}{x+2}+\frac{x-4}{x\left(x+2\right)}\)

\(=\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{3x}{x\left(x+2\right)}+\frac{x-4}{x\left(x+2\right)}\)

\(=\frac{2x+4+3x+x-4}{x\left(x+2\right)}\)

\(=\frac{6x}{x\left(x+2\right)}=\frac{6}{x+2}=B\)

=> đpcm

10 tháng 12 2020

                Bài làm :

Ta có :

\(A=\frac{2}{x}+\frac{3}{x+2}+\frac{x-4}{x^2+2x}\)

\(=\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{3x}{x\left(x+2\right)}+\frac{x-4}{x\left(x+2\right)}\)

\(=\frac{2x+4+3x+x-4}{x\left(x+2\right)}\)

\(=\frac{6x}{x\left(x+2\right)}\)

\(=\frac{6}{x+2}=B\)

=> Điều phải chứng minh

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a.

$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$

$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$

$=4(2x+8)+2(-2)(2x-8)$

$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$

b.

$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$

c.

$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$

$=x^4+2x^2-(x^4+6x^2-4x^2)$

$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$

 

a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)

\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)

\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)

\(=34\)

b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-8-x^3-8\)

=-16

c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)

\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)

\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)

\(=-9\)

13 tháng 7 2021

\(a.\)

\(A=9x^2-6xy+2y^2+1\)

\(A=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\)

\(A=\left(3x-y\right)^2+\left(y^2+1\right)\ge0\)

\(b.\)

\(B=x^2-2x+y^2+4y+6\)

\(B=x^2-2x+1+y^2+4y+4+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

\(c.\)

\(C=x^2-2x+2\)

\(C=x^2-2x+1+1\)

\(C=\left(x-1\right)^2+1\ge1\)

13 tháng 7 2021

a) A=9x2-6xy+2y2+1

    A=(3x)2-2.3x.y+y2+y2+1

    A=(3x-y)2+(y2+1)≥0

Câu b, c tương tự câu a

 

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

22 tháng 11 2021

\(a,ĐK:x\ne\pm2\\ A=\dfrac{4x-8+2x+4-5x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\\ ĐK:x\ne-1;x\ne-2\\ B=\dfrac{x+1}{\left(x+1\right)\left(x+2\right)}=\dfrac{1}{x+2}\\ b,x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \forall x=0\Leftrightarrow A=\dfrac{1}{0-2}=-\dfrac{1}{2}\\ \forall x=-1\Leftrightarrow A=\dfrac{1}{-1-2}=-\dfrac{1}{3}\)

\(x^2+2x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ \Leftrightarrow B=\dfrac{1}{0+2}=\dfrac{1}{2}\)

9 tháng 3 2023

Trên là 3 xuống thành 2 rồi :v 

Chỗ :  \(-x^2\) 

9 tháng 3 2023

` P(x) = x^3-2x^2+x-2`

`Q(x) = 2x^3 - 4x^2+ 3x – 5​​​​6`

a) `P(x) -Q(x)`

`= x^3-2x^2+x-2 - 2x^3 +4x^2 -3x +56`

`=(x^3-2x^3) +(4x^2-2x^2) +(x-3x) +(-2+56)`

`= -x^2 +2x^2 -2x +54`

b) Thay `x=2` vào `P(x)` ta đc

`P(2) = 2^3 -2*2^2 +2-2`

`= 8-8+2-2 =0`

Vậy chứng tỏ `x=2` là nghiệm của đa thức `P(x)`

Thay `x=2` vào `Q(x)` ta đc

`Q(2) = 2*2^3 -4*2^2 +3*2-56`

`=16 -16+6-56`

`= -50`

Vậy chứng tỏ `x=2` là ko nghiệm của đa thức `Q(x)`

31 tháng 1 2019

a) Rút gọn P = 3  Þ giá trị của biểu thức P không phụ thuộc vào giá trị của m.

b) Rút gọn Q = 9  Þ giá trị của biểu thức Q không phụ thuộc vào giá trị của m.

6 tháng 6 2021

a)P=x(2x+1)-x2(x+2)+x3-x+3

   P=2x2+x-x3-2x2+x3-x+3

   P=(2x2-2x2)+(x-x)+(-x3+x3)+3

   P= 0           +   0   +     0     +3

   P=3 

Vậy giá trị của của biểu thức đã cho không phụ thuộc vào giá trị của biến x

 

 

26 tháng 12 2018

bucminh Giúp mik vs mn ơi!

26 tháng 12 2018

Câu 1:a. = x^4+x^3+3x^2+2x+2 b= -12