K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

Đáp án: D.

Xét hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y' =  x 2  - mx = 0 ⇔ x = 0 hoặc x = 3

Nếu m = 0: Phương trình thành x 3 /3 - 5 = 0, có nghiệm duy nhất.

Nếu m ≠ 0: Phương trình đã cho có nghiệm duy nhất khi và chỉ khi cực đại và cực tiểu của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

cùng dấu.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

16 tháng 7 2018

Để hệ phương trình m x − 2 y = 1 2 x − m y = 2 m 2 có nghiệm duy nhất thì m 2 ≠ − 2 − m ⇔ m 2 ≠ 4 ⇔ m ≠ ± 2

Đáp án: D

3 tháng 5 2018

Đáp án: B.

Với m = 0, phương trình 2 x 3  - 5 = 0 có nghiệm duy nhất.

Với m ≠ 0, đồ thị hàm số y = 2 x 3  + 3m x 2  - 5 chỉ cắt Ox tại một điểm khi y C Đ . y C T  > 0. Ta có y' = 6 x 2  + 6mx = 6x(x + m) = 0 có hai nghiệm là x = 0, x = -m; y(0) = -5, y(-m) = -2 m 3  + 3 m 3  - 5 =  m 3  - 5.

Suy ra y(0).y(-m) = -5( m 3  - 5) > 0 ⇔ m < Giải sách bài tập Toán 12 | Giải sbt Toán 12

8 tháng 7 2018

Xét hệ x − ( m − 2 ) y = 2 ( m − 1 ) x − 2 y = m − 5

⇔ ( m − 2 ) y = x − 2 2 y = ( m − 1 ) x − m + 5 ⇔ ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2

TH1: Với m – 2 = 0 ⇔ m = 2 ta có hệ 0. y = x − 2 y = 1 2 x + 3 2 ⇔ x = 2 y = 1 2 x + 3 2

Nhận thấy hệ này có nghiệm duy nhất vì hai đường thẳng x = 2 và y = 1 2 x + 3 2 cắt nhau

TH2: Với m – 2 ≠ 0m ≠ 2 ta có hệ: ( m − 2 ) y = x − 2 y = m − 1 2 x − m 2 + 5 2 ⇔ y = 1 m − 2 x − 2 m − 2 y = m − 1 2 x − m 2 + 5 2

 

Để hệ phương trình đã cho có nghiệm duy nhất thì hai đường thẳng: d : y = 1 m − 2 x − 2 m − 2 và d ' : y = m − 1 2 x − m 2 + 5 2 cắt nhau

⇔ 1 m − 2 ≠ m − 1 2 ⇔ m   –   1 m   –   2 ≠ 2 ⇔   m 2 – 3 m + 2 ≠ 2   ⇔ m 2 – 3 m   0

Suy ra m ≠ {0; 2; 3}

Kết hợp cả TH1 và TH2 ta có m ≠ {0; 3}

Vậy hệ phương trình đã cho có nghiệm duy nhất khi m ≠ {0; 3}

Đáp án: C

16 tháng 2 2017

Đáp án: D.

Xét hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y' = x 2  - mx = 0 ⇔ x = 0 hoặc x = 3

Nếu m = 0: Phương trình thành  x 3 /3 - 5 = 0, có nghiệm duy nhất.

Nếu m ≠ 0: Phương trình đã cho có nghiệm duy nhất khi và chỉ khi cực đại và cực tiểu của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

cùng dấu.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

29 tháng 12 2023

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{3}\ne-\dfrac{1}{m}\)

=>\(m^2\ne-3\)(luôn đúng)

\(\left\{{}\begin{matrix}mx-y=2\\3x+my=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\3x+m\cdot\left(mx-2\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+3\right)=5+2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=mx-2\\x=\dfrac{2m+5}{m^2+3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{2m^2+5m}{m^2+3}-2=\dfrac{2m^2+5m-2m^2-6}{m^2+3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+5}{m^2+3}\\y=\dfrac{5m-6}{m^2+3}\end{matrix}\right.\)

\(x+y=\dfrac{3}{m^2+3}\)

=>\(\dfrac{2m+5+5m-6}{m^2+3}=\dfrac{3}{m^2+3}\)

=>\(7m-1=3\)

=>7m=4

=>m=4/7(nhận)

27 tháng 9 2019

Đáp án: B.

Với m = 0, phương trình 2 x 3  - 5 = 0 có nghiệm duy nhất.

Với m ≠ 0, đồ thị hàm số y = 2 x 3  + 3m x 2  - 5 chỉ cắt Ox tại một điểm khi y CĐ . y CT  > 0. Ta có y' = 6 x 2  + 6mx = 6x(x + m) = 0 có hai nghiệm là x = 0, x = -m; y(0) = -5, y(-m) = -2 m 3  + 3 m 3  - 5 =  m 3  - 5.

Suy ra y(0).y(-m) = -5( m 3  - 5) > 0 ⇔ m <  5 3

1 tháng 6 2018

Đáp án A

31 tháng 5 2018

Chọn D

Phương pháp:

Biến đổi phương trình về f(x) = 2018 - m và sử dụng tương giao đồ thị: Phương trình có duy nhất một nghiệm khi và chỉ khi đường thẳng y = 2018 - m cắt đồ thị hàm số y = f(x) tại duy nhất một điểm.

Cách giải:

Phương trình f(x) + m - 2018 = 0 

 

Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 - m (có phương song song hoặc trùng với trục hoành).

Dựa vào đồ thị, ta có ycbt 

18 tháng 11 2018