K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2016

=(3n+2+3n) +(2n+3+2n+1)

=3n(32+1) +2n(23+2)

=3n.10 +2n.10

=10.(3n+2n)

=> Chia hết cho 10

3 tháng 2 2016

Có 3n+2 + 2n+3 + 3n + 2n+1

=> ( 3n+2 + 3n) + (2n+3 + 2n+1)

=> 3n(32+1) + 2n+1(22 + 1)

=> 3n.10 + 2n+1. 5

=>3n.10 + 2n.10

=> 10.(3n + 2n) => KL:...

AH
Akai Haruma
Giáo viên
13 tháng 7 2023

Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.

\(1.3n+1\inƯ\left(10\right)\)

Ta lập bảng xét giá trị 

3n+11-12-25-510-10
3n0-21-34-69-11
n0-2/31/3-14/3-23-11/3

\(2.13⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

Ta lập bảng xét g trị

3n+11-113-13
n0-2/34-14/3

\(3.2n+8⋮2n+1\)

\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)

\(\Rightarrow7⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng xét g trị

2n+11-17-7
2n0-26-8
n0-13-4

\(4.6n+6⋮2n+1\)

\(\Rightarrow6n+3+1⋮2n+1\)

\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

Ta lập bảng xét g trị 

2n+11-1
2n0-2
n0-1


 

2 tháng 12 2019

Bài chứng minh hả bạn

12 tháng 8 2016

Ta có : \(2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

=> \(-5n^2-5n=-5\left(n^2+n\right)\)Như vậy luôn chia hết cho 5 với mọi n

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

4 tháng 10 2018
21 tháng 7 2023

\(=3^3.3^n+3.3^n+2^3.2^n+2^2.2^n=\)

\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)=30.3^n+12.2^n=\)

\(=6\left(5.3^n+2.2^n\right)⋮6\)

21 tháng 7 2023

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}\left(9+3\right)+2^{n+2}\left(8+4\right)\)

\(=12.3^{n+1}+12.2^{n+2}=12.\left(3^{n+1}+2^{n+2}\right)\)

mà 12⋮6

\(\Rightarrow12.\left(3^{n+1}+2^{n+2}\right)⋮6\Rightarrow dpcm\)