K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

a, xét tam giác BDM và tam giác CEM có:

              BM=CM(gt)

             \(\widehat{BMD}\)=\(\widehat{CME}\)(vì đối đỉnh)

\(\Rightarrow\)tam giác BDM=tam giác CEM( CH-GN)

b, xét tam giác BEM và tam giác CDM có

                    BM=CM

                   \(\widehat{CMD}\)=\(\widehat{BME}\)(đối đỉnh)

                   MD=ME(theo câu a)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CDM(c.g.c)

\(\Rightarrow\)\(\widehat{MCD}\)=\(\widehat{MBE}\) mà 2 góc này ở vị trí so le trong nên BE//CD

27 tháng 3 2019

c) Xét tam giác ABM có: MH vuông AB, BD vuông AM

Mà BD cắt MH tại I

=> I là trực tâm

Gọi J là giao của AI và BC khi đó:

AJ vuông BC

Xét 2 tam giác vuông AJM vàCEM có:

AM=MC(=1/2BC)( vì tam giác ABC vuông thì trung tuyến bằng 1/2 cạnh huyền)

góc IMA=góc EMC

=> Tam giác ẠM=tam giác CEM

=> \(\widehat{JAM}=\widehat{ECM}\) mặt khác  MA=MC=> tam giác MAC cân => \(\widehat{MAN}=\widehat{MCN}\)

từ đó suy ra \(\widehat{IAN}=\widehat{ECN}\)

Gọi K là giao điểm của AI và CE 

=> tam giác KAC cân

=> KA=KC

=> K nằm trên đường trung trực AC

Mặc khác MN là đường cao của tam giác cân MAC

=> MN là đường trung trực của AC

=> MN qua K

vậy MN, AI và CE đồng quy tại K

=> 

9 tháng 2 2019

Hỏi đáp Toán

a) Ta có: ^BAR+^DAR=^BAD=900 (1)

^DAQ+^DAR=900 (Do PQ vuông góc AR) (2)

Từ (1) và (2) => ^BAR=^DAQ

Xét \(\Delta\)ABR và \(\Delta\)ADQ:

^ABR=^ADQ=900

AB=AD => \(\Delta\)ABR=\(\Delta\)ADQ (g.c.g)

^BAR=^DAQ

=> AR=AQ (2 cạnh tương ứng) . Xét tam giác AQR:

AR=AQ, ^QAR=900 => \(\Delta\)AQR là tam giác vuông cân tại A.

Tương tự: \(\Delta\)ADS=\(\Delta\)ABP (g.c.g)

=> AS=AP, ^PAS=900 => \(\Delta\)APS vuông cân tại A.

b) \(\Delta\)AQR vuông cân tại A, M là trung điểm của QR => AM vuông góc QR (3)

Tương tự: AN vuông góc với PS (4)

Lại có: AM là phân giác của ^QAR (Do \(\Delta\)AQR...) => ^MAR=450

AN là phân giác của ^PAS => ^SAN=450

=> ^MAR+^SAN=^MAN=900 (5)

Từ (3), (4) và (5) => Tứ giác AMHN là hình chữ nhật (đpcm)

c) Vì tứ giác AMHN là hcn => ^MHN=900 => MH vuông góc với PS hay QH vuông góc với PS

Xét \(\Delta\)SQR: PQ vuông góc RS tại A, PS vuông góc QR tại H

=> P là trực tâm của tam giác SQR (đpcm).

d) Ta thấy \(\Delta\)PCS vuông tại C (PC vuông góc QS), N là trung điểm của PS => CN=PN=SN.

Lại có: Tam giác APS vuông cân tại A, N là trung điểm PS => AN=PN=SN

=> CN=AN => N nằm trên đường trung trực của AC (6)

Tương tự: Tam giác QCR vuông tại C, M là trung điểm QR => CM=QM=RM

Tam giác AQR vuông cân A, M là trung điểm QR => AM=QM=RM

=> CM=AM => M nằm trên đường trung trực của AC (7)

Từ (6) và (7) => MN là trung trực của AC (đpcm). (8)

e) Xét hình vuông ABCD: 2 đường chéo AC và BD vuông góc với nhau tại trung điểm mỗi đường

=> BD là trung trực của AC (9)

Từ (8) và (9) => M;B;N;D thẳng hàng (đpcm).

10 tháng 2 2019

thank youkhocroi