chứng minh rằng với mọi số nguyên dương n thi (n+1).(n+2).(n+3).....(2n) chia hết cho 2n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải. Bước cơ sở: Với n = 1, ta có S1 = 1 + 1 = 2 chia hết cho 21 = 2. Bước quy nạp: Giả sử mệnh đề đúng với n = k, nghĩa là Sk = (k + 1)(k + 2) ...(k + k) chia hết cho 2k , ta phải chứng minh mệnh đề đúng với n = k + 1. Thật vậy, Sk+1 = (k + 2)(k + 3) ...[(k+1) + (k+1)]= 2(k + 1)(k + 2)...(k + k) = 2Sk. Theo giả thiết quy nạp Sk chia hết cho 2k , suy ra Sk+1 chia hết cho 2k+1. Theo nguyên lí quy nạp toán học Sn chia hết 2n với mọi n nguyên dương.
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!