tìm tất cả các sngto P để P2 +2P là sngto
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố
Với p = 2 ta co 2p + p2 = 12 không là số nguyên tố
Với p = 2 ta có 2p + p2 = 17 là số nguyên tố
Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó 2p + p2 là hợp số
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
HT
Xét p=2
⇒ \(2^2+2^2=4+4=8\left(L\right)\)
Xét p=3
⇒ \(2^3+3^2=8+9=17\left(TM\right)\)
Xét p>3
⇒ p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.
Do đó: 2p+p2là hợp số (L)
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
2,Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
p.q + 1là số nguyên tố
Mà p.q + 1 > 3 => p .q + 1 lẻ => p.q chẵn
< = > p = 2 hoặc q = 2
Bạn liệt kê ra
nhầm P là số nguyên tố cơ mà tưởng nhầm P ko phải số nguyên tố vậy thì P= 3