Hình trụ (T) được sinh ra khi quay hình chữ nhật ABCD quanh cạnh AB. Biết A C = 2 a 2 và A C B ^ = 45 0 . Diện tích toàn phần S t p của hình trụ (T) là
A. S t p = 16 π a 2 .
B. S t p = 10 π a 2 .
C. S t p = 12 π a 2 .
D. S t p = 8 π a 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Vì ABCD là hình chữ nhật và A C B ⏜ = 45 ° nên ABCD là hình vuông.
Ta có: 2. A B 2 = 2 3 a 2 ⇔ A B = 6 a
S t p = 2 π B C 2 + 2 π . B C = 2 π . B C . A B = 2 π . 6 a 2 + 2 π . 6 a 2 = 24 π a 2
Theo đề bài ta có: AB + AD = 3a ; AB.AD = 2 a 2
Độ dài AB và AD là nghiệm của phương trình : x 2 – 3ax +2 a 2 = 0
∆ = (-3 a 2 ) - 4.1.2 a 2 = 9 a 2 – 8 a 2 = a 2 > 0
∆ = a 2 = a
x 1 = (3a +a)/2 = 2a ; x 2 = (3a -a)/2 = a
Vì AB > AD nên AB =2a ,AD =a
Diện tích xung quanh của hình trụ :
S = 2πrh = 2π.AD.AB = 2π.a.2a = 4π a 2 (đvdt)
Thể tích của hình trụ :
V = π. R 2 .h = π. A D 2 .AB = π. a 2 .2a = 2π. a 3 (đvdt)
Đáp án A
Khi quay hình chữ nhật xung quanh cạnh AB thì bán kính hình trụ lúc này R 1 = A D , chiều cao bằng h 1 = A B . Khi đó V 1 = π R 1 2 h 1 = π . A D 2 . A B .
Khi quay hình chữ nhật xung quanh cạnh AD thì bán kính hình trụ lúc này là R 2 = A B , chiều cao h 2 = A D . Khi đó V 2 = π R 2 2 h 2 = π A B 2 . A D .
Do đó, tỉ số thể tích là V 1 V 2 = π . A D 2 . A B π . A B 2 . A D = A D A B = 3 2 .
Đáp án là A