K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

15 tháng 3 2019


30 tháng 1 2017

Đáp án C

Đồ thị hàm số có tiệm cận đứng là x = 1 , tiệm cận ngang là y = − 1 ; y = 1

13 tháng 2 2019

Đáp án là D

18 tháng 2 2018

Chọn D

Phương pháp

Nếu  thì y = y 0  là phương trình đường tiệm cận ngang của đồ thị hàm số.

Nếu  thì x =  x 0  là phương trình đường tiệm cận ngang của đồ thị hàm số.

Cách giải:

TXĐ: 

Ta có:  nên x = 1 là tiệm cận đứng của đồ thị hàm số.

nên x = -1 không là tiệm cận đứng của đồ thị hàm số.

Ta có 

=> tiệm cận ngang y = 1

Lại có 

=> tiệm cận ngang y = -1

Đồ thị hàm số y =  x + 1 x 2 - 1 có tất cả 3 tiệm cận đứng và tiệm cận ngang.

15 tháng 7 2017

Đáp án C

8 tháng 8 2018

2 tháng 12 2017



17 tháng 1 2019

Đáp án D

Đồ thị hàm số  y = 1 2 x - 3  có hai đường tiệm cận đứng và một đường tiệm cận ngang

Đồ thị hàm số  y = x + x 2 + x + 1 x   có 1 tiệm cận đứng là x = 0 

Mặt khác  lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0  nên đồ thị hàm số có 2 tiệm cận ngang

Xét hàm số  y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2  suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng

NV
2 tháng 9 2021

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1+\dfrac{1}{x}}{-\left(m^2+1\right)\sqrt[]{1-\dfrac{4}{x^2}}}=-\dfrac{1}{m^2+1}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{1}{m^2+1}\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận ngang

\(\lim\limits_{x\rightarrow2^+}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{3}{0}=\infty\)

\(\lim\limits_{x\rightarrow-2^-}\dfrac{x+1}{\left(m^2+1\right)\sqrt{x^2-4}}=\dfrac{-1}{0}=\infty\)

\(\Rightarrow\) ĐTHS có 2 tiệm cận đứng

Vậy ĐTHS có 4 tiệm cận

4 tháng 9 2021

tại sao nơi chỗ lim\(_{x->2^+}\) và limx->-2-    ở dưới mẫu lại bằng 0 vậy  ạ?