Xét tính tăng, giảm của các dãy số u n , biết: u n = - 1 n . 2 n + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với $n$ lẻ bất kỳ:
$u_n<0; u_{n+1>0; u_{n+2}< 0$
$\Rightarrow u_n< u_{n+1}> u_{n+2}$ với mọi $n$ lẻ bất kỳ
Do đó dãy không tăng cũng không giảm.
+ Xét tính tăng giảm.
Với mọi n ∈ N ta có:
⇒ un + 1 < un với mọi n ∈ N.
⇒ (un) là dãy số giảm.
+ Xét tính bị chặn.
un > 0 với mọi n.
⇒ (un) bị chặn dưới.
un ≤ u1 = √2 - 1 với mọi n
⇒ (un) bị chặn trên.
⇒ (un) bị chặn.
a: \(u_{n+1}-u_n\)
\(=2-3\left(n+1\right)-2+3n\)
=-3n-3+3n
=-3<0
=>Đây là dãy giảm
b: \(u_{n+1}-u_n\)
\(=\dfrac{n+2}{n+1}-\dfrac{n+1}{n}\)
\(=\dfrac{n^2+2n-n^2-2n-1}{n\left(n+1\right)}=\dfrac{-1}{n\left(n+1\right)}< 0\)
=>Đây là dãy giảm
c: \(u_{n+1}-u_n==\dfrac{1}{n+2}-\dfrac{1}{n+1}\)
\(=\dfrac{n+1-n-2}{\left(n+1\right)\left(n+2\right)}=\dfrac{-1}{\left(n+1\right)\left(n+2\right)}< 0\)
=>Đây là dãy giảm
d: \(\dfrac{u_{n+1}}{u_n}=\dfrac{2^{n+1}}{2^n}=2>1\)
=>Đây là dãy tăng
\(u_n=\dfrac{3^n-1}{2^n}\)
\(\Rightarrow u_{n+1}=\dfrac{3^{n+1}-1}{2^{n+1}}\)
\(\Rightarrow u_{n+1}-u_n=\dfrac{3^{n+1}-1}{2^{n+1}}-\dfrac{3^n-1}{2^n}\)
\(\Rightarrow u_{n+1}-u_n=\dfrac{2^n.3^{n+1}-2^n-2^{n+1}.3^n+2^{n+1}}{2^n.2^{n+1}}\)
\(=\dfrac{2^n.3^n\left(3-2\right)-2^n\left(2-1\right)}{2^{2n+1}}\)
\(=\dfrac{2^n.\left(3^n-1\right)}{2^{2n+1}}\)
\(=\dfrac{\left(3^n-1\right)}{2}>0\left(n>1\right)\)
Vậy dãy \(u_n\)đã cho tăng
un = (-1)n.(2n + 1)
Nhận xét: u1 < 0, u2 > 0, u3 < 0, u4 > 0, …
⇒ u1 < u2, u2 > u3, u3 < u4, …
⇒ dãy số (un) không tăng, không giảm.