K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Đáp án B

TXĐ: D = ℝ \ 2 .

Ta có phương trình hoành độ giao điểm: x − 3 x − 2 = − x + k , x ≠ 2

Để đường thẳng Δ  cắt đồ thị C  tại hai điểm phân biệt thì phương trình  có hai nghiệm phân biệt khác 2 , khi đó

Δ = k + 1 2 − 4 2 k − 3 > 0 2 2 − k + 1 .2 + 2 k − 3 ≠ 0 ⇔ k 2 − 6 k + 13 > 0 − 1 ≠ 0 ⇔ k − 3 2 + 4 > 0 , ∀ k ∈ ℝ .

18 tháng 11 2018

Chọn đáp án A

Hoành độ giao điểm của đường thẳng ∆ và đồ thị (C) là nghiệm của phương trình

Đường thẳng  cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt khác 2.

30 tháng 9 2018

Đáp án A

Ta có: phương trình hoành độ giao điểm của (C) và  (x ≠ 0).

 

 

Gọi I(x1;y1) là trung điểm đoạn thẳng AB.

1 tháng 12 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

17 tháng 9 2018

6 tháng 3 2017

23 tháng 3 2018

Đáp án A

Phương trình hoành độ gioa điểm của d và (C) là

 

 

Suy ra suy ra Dễ dàng tính được  

10 tháng 12 2020

giải giúp mik vs 

10 tháng 12 2020

a) 

Thay x=0 vào hàm số y= 3x+3, ta được: y= 3 x 0 + 3 = 3

Thay y=0 vào hàm số y= 3x+3, ta được: 0= 3x+3 => x= -1

Vậy đồ thị hàm số đi qua điểm B(-1;0) và C(0;3)

Thay x=0 vào hàm số y= -x+1, ta được: y=  -0 + 1 = 1

Thay y=0 vào hàm số y= -x+1, ta được: 0= -x+1 => x= 1

(Có gì bạn tự vẽ đồ thị nha :<< mình không load hình được sorry bạn nhiều)

b) Hoành độ giao điểm của hai đường thằng y=3x+3 và y=-x+1 :

3x+3 = -x+1

<=> 3x + x = 1 - 3

<=> 4x = -2

<=> x= - \(\dfrac{1}{2}\)

Thay x= - \(\dfrac{1}{2}\) vào hàm số y= -x+1, ta được: y= \(\dfrac{1}{2}\)+1 = \(\dfrac{3}{2}\)

Vậy giao điểm của hai đường thằng có tọa độ (\(-\dfrac{1}{2};\dfrac{3}{2}\))

c) Gọi góc tạo bởi đường thẳng y= 3x+3 là α

OB= \(\left|x_B\right|=\left|-1\right|=1\)

OC= \(\left|y_C\right|=\left|3\right|=3\)

Xét △OBC (O= 90*), có:

\(tan_{\alpha}=\dfrac{OC}{OB}=\dfrac{3}{1}=3\)

=> α= 71*34'

Vậy góc tạo bởi đường thằng y=3x+3 là 71*34'