Cho mặt cầu tâm O, bán kính R = 3. Mặt phẳng P nằm cách tâm O một khoảng bằng 1 và cắt mặt cầu theo một đường tròn có chu vi bằng
A. 4 2 π
B. 6 2 π
C. 3 2 π
D. 8 2 π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2 (1)
Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2 (2)
Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2 (3)
Ta lại có:
AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2 (4)
DC 2 = 4 r 2 - h 2 , AB 2 = 4 h 2 (5)
Từ (4) và (5) ta có:
AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2 (6)
Từ (3) và (6) ta có: AD 2 + BC 2 = AC 2 + BD 2 (không đổi)
Diện tích tam giác BCD bằng:
Diện tích này lớn nhất khi AI // CD.
Ta có AH ⊥ DC. Do đó khi CD di động, điểm H luôn luôn nhìn đọan thẳng AI dưới một góc vuông. Vậy tập hợp các điểm H là đường tròn đường kính AI nằm trong mặt phẳng ( α ).
Ta có bán kính đường tròn đáy của hình nón , chiều cao khối nón h = 6 + x
Thể tích khối nón:
Đáp án A
Ta có O H = d O , P = 1 , O A = R = 3
Áp dụng định lí Pytago cho tam giác vuông HOA ta có
r = H A = O A 2 − O H 2 = 9 − 1 = 2 2
Vậy chu vi đường tròn thiết diện là 2 π r = 4 2 π