Cho góc BAC. Vẽ góc CAM kề với góc BAC mà góc CAM bằng góc BAM và = a
a, Chứng tỏ rằng a lớn hơn hoặc bằng 90 độ
b, Chứng tỏ rằng tia AM là tia đối của tia phân giác góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{BAC}+\widehat{EAC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{EAC}+60^0=180^0\)
hay \(\widehat{EAC}=120^0\)
Vậy: \(\widehat{EAC}=120^0\)
b)
Ta có: AD là tia phân giác của \(\widehat{CAE}\)(gt)
nên \(\widehat{EAD}=\widehat{CAD}=\dfrac{\widehat{EAC}}{2}=\dfrac{120^0}{2}=60^0\)
Ta có: \(\widehat{EAD}+\widehat{BAD}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{BAD}+60^0=180^0\)
hay \(\widehat{BAD}=120^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia AB, ta có: \(\widehat{BAC}< \widehat{BAD}\left(60^0< 120^0\right)\)
nên tia AC nằm giữa hai tia AB và AD
Ta có: tia AC nằm giữa hai tia AB và AD(cmt)
mà \(\widehat{BAC}=\widehat{DAC}\left(=60^0\right)\)
nên AC là tia phân giác của \(\widehat{BAC}\)(Đpcm)
a) Ta có: góc BAC + góc EAC =180\(^0\)(kề bù)
suy ra góc EAC= 120\(^0\)
Vì Ad là tia phân giác của \(\widehat{CAe}\) nên \(\widehat{CAE}\)= \(\widehat{DAE}\)
mà \(\widehat{CAD}\)+\(\widehat{DAE}\)=\(\widehat{EAC}\)
⇒\(\widehat{CAD}\) = \(\widehat{DAE}\)= \(\widehat{\frac{EAC}{2}}\)=\(\frac{120^0}{2}\)=60\(^0\)
mà \(\widehat{BAC}\)= 60 \(^0\) ⇒\(\widehat{BAC}\)=\(\widehat{CAD}\) =60\(^0\)⇒AC là tia phân giác của \(\widehat{bAd}\)(ĐPCM)
b) Ta có : \(\widehat{CAE}\)+\(\widehat{EAG}\)=180 \(^0\) (kề bù )
suy ra\(\widehat{EAG}\)=60 \(^0\)
Có \(\widehat{BAG}\)+ \(\widehat{EAG}\)=180 \(^0\)( KB)
suy ra \(\widehat{BAG}\) =120 \(^0\)
Vì AB là tia phân giác của \(\widehat{BAG}\) suy ra \(\widehat{GAb}\) = \(\frac{\widehat{BAG}}{2}\) =60\(^0\)
Ta có \(\widehat{EAD}\)+\(\widehat{BAd}\)+\(\widehat{EAG}\)=180\(^0\)
suy ra \(\widehat{BAd}\)=180\(^0\)
Tia Ad,Ab là 2 tia đối nhau (ĐPCM)
(Bài toán vẫn có 1 số lỗi nhỏ, hình cậu tự vẽ nha, vẽ trên đây không đúng 100%) Học tốt!
a) Ta có : \(\widehat{BAC}\)+ \(\widehat{EAC}\)\(=180^0\)(Kề bù)
Suy ra: \(\widehat{EAC}\)\(=120^0\)
Vì Ad là tia phân giác của \(\widehat{CAe}\)nên \(\widehat{CAD}\)\(=\widehat{DAE}\)
Mà \(\widehat{CAD}\)\(+\widehat{DAE}\)\(=\widehat{EAC}\)
\(\Rightarrow\widehat{CAD}+\widehat{DAE}=\)\(\widehat{\frac{EAC}{2}}\)\(=\frac{120^0}{2}=60^0\)
Mà \(\widehat{BAC}=60^0\Rightarrow\widehat{BAC}=\widehat{CAD}\Rightarrow AC\)là tia phân giác của \(\widehat{bAd}\)(ĐPCM)
B) Ta có: \(\widehat{CAE}+\widehat{EAG}=180^0\)(Kề bù)
\(\Rightarrow\widehat{EAG}=60^0\)
Ta có \(\widehat{BAG}+\widehat{EAG}=180^0\)
\(\widehat{BAG}+60^0=180^0\)
\(\widehat{BAG}=180^0-60^0\)
\(\widehat{BAG}=120^0\)
Vậy \(\widehat{BAG}=120^0\)
Vì AB là tia phân giác của \(\widehat{BAG}\)
Nên: \(\widehat{GAb}=\frac{\widehat{BAG}}{2}=\frac{120^0}{2}=60^0\)
Ta có: \(\widehat{EAD}+\widehat{BAb}+\widehat{EAG}=180^0\)
\(\Rightarrow\widehat{bAd}=180^0\)
Suy ra: Tia Ad và Ab là 2 tia đối nhau (ĐPCM)
[Bạn tự vẽ hình nha ( trong bài vẫn còn vài lỗi, xem kĩ nha)]
a) Do BOC và AOB là 2 góc kề bù
=> OA ; OC là 2 tia đối nhau
Do AOD và AOB là 2 góc kề bù
=> OD ; OB là 2 tia đối nhau
=> BOC và AOD là 2 góc đối đỉnh (dpcm)
b) ?????????????
Tìm cách giải
Đề bài có cho hai tia đối nhau nên ta vận dụng tính chất của hai góc kề bù. Ngoài ra đề bài còn có tia phân giác nên trong hình vẽ có hai góc bằng nhau.
Trình bày lời giải
Hai góc MAB và BAD kề bù nên M A B ^ = 180 ° − 130 ° = 50 ° .
Tia AM là tia phân giác của góc BAC nên M A C ^ = M A B ^ = 50 ° .
Do đó M A C ^ = C ^ = 50 ° ⇒ A D / / C E vì có cặp góc so le trong bằng nhau
câu a thiếu