Cho hàm số f(x) xác định trên R và có đồ thị f(x) như hình vẽ. Đặt g ( x ) = f ( x ) - x . Hàm số g(x) đặt cực đại tại điểm nào sau đây?
A. x = 1
B. x = 2
C. x = 0
D. x = -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có g’(x) = f’(x) + 1.
Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song với Oy lên trên 1 đơn vị.
Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.
=> Hàm số y= g(x) có 2 điểm cực trị.
Đáp án A.
Phương pháp: Tính g’(x) tìm các nghiệm của phương trình g’(x) = 0
Điểm x0 được gọi là điểm cực tiểu của hàm số y = g(x) khi và chỉ khi g’(x0) = 0 và qua điểm x = x0 thì g’(x) đổi dấu từ âm sang dương.
Cách giải:
Khi x<1 ta có:
Khi x>1 ta có:
Qua x = 1, g’(x) đổi dấu từ dương sang âm => x = 1 là điểm cực đại của đồ thị hàm số y = g(x)
Chứng minh tương tự ta được x = –1 là điểm cực tiểu và x = –3 là điểm cực đại của đồ thị hàm số y = g(x)
Chọn B
+ Dựa vào đồ thị hàm số ta thấy :
- Hàm số y= f( x) nghịch biến trên khoảng ( - ∞; 1) và ( 3; 5) .
- Hàm số y= f( x) nghịch biến trên khoảng ( 1 ; 3) và ( 5 ; + ∞)