Tính thể tích chóp SABCD có đáy là hình vuông cạnh bằng a, mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với đáy.
A. a 3 3 2
B. a 3 3
C. a 3 3 3
D. a 3 3 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
Công thức tính thể tích khối chóp có diện tích đáy S và chiều cao h là: V = 1 3 S h
Cách giải:
Đáp án D
Gọi H,M lần lượt là trung điểm của AB và CD
Vì Δ S A B đều và mặt phẳng S A B ⊥ A B C D ⇒ S H ⊥ A B C D .
Ta có
C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ S H M (1)
Gọi I là hình chiếu vuông góc của H lên mặt phẳng S C D (2)
Từ (1) và (2) suy ra H I ⊥ S C D
Vì A B // C D ⇒ A B // S C D ⇒ d A , S C D = d H , S C D = H I = 3 a 7 7
Giải sử A B = x x > 0 ⇒ S H = x 3 2 H M = x .
Mặt khác: 1 H I 2 = 1 H M 2 + 1 S H 2 ⇔ 7 9 a 2 = 1 x 2 + 4 3 x 2 ⇔ x 2 = 3 a 2 ⇒ x = 3 a
Thể tích: V S . A B C D = 1 3 S H . S A B C D = 1 3 . 3 a 2 .3 a 2 = 3 a 3 2 (đvtt)
Đáp án D
Ta có diện tích đáy S A B C D = a 2
Chiều cao SH = a 3 2
Từ đây ta tính được thể tích là: V S . A B C D = a 3 3 6
=> Chọn đáp án D
Chọn D.
Ta có: SA=SB=AB=a 3
Gọi H là trung điểm của AB.
Do (SAB) ⊥ (ABCD) nên SH ⊥ (ABCD). Khi đó SH= 3 a 2
Diện tích đáy S A B C D = 3 a 2
Vậy thể tích khối chóp
V
S
.
A
B
C
D
=
1
3
S
H
.
S
A
B
C
D
=
3
a
2
2
Gọi H là trung điểm của AB, suy ra A H ⊥ A B C D .
Gọi G là trọng tâm tam giác ∆SAB và O là tâm hình vuông ABCD.
Từ G kẻ GI//HO suy ra GI là trục đường tròn ngoại tiếp tam giác ∆SAB và từ O kẻ OI//SH thì OI là trục đường tròn ngoại tiếp hình vuông ABCD.
Ta có hai đường này cùng nằm trong mặt phẳng và cắt nhau tại I.
Suy ra I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.
R = S I = S G 2 + G I 2 = a 21 6 .
Suy ra thể tích khối cầu ngoại tiếp khối chóp S.ABCD là V = 4 3 π R 3 = 7 21 54 π a 3
Đáp án A
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(SH=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{6}}{2}\)
\(V=\dfrac{1}{3}SH.AB^2=\dfrac{1}{3}.\dfrac{a\sqrt{6}}{2}.2a^2=\dfrac{a^3\sqrt{6}}{3}\)