Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a,SA vuông góc với mặt phẳng đáy và SA = a. Tính khoảng cách giữa hai đường thẳng SA và BC
A. a 3
B. a
C. a 3 /4
D. a 3 /2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là trung điểm của đoạn BC. Qua A vẽ AD song song với BC và bằng đoạn HC thì góc giữa BC và SA là góc ∠SAD. Theo định lí ba đường vuông góc, ta có SD ⊥ DA và khi đó:
Vậy góc giữa BC và SA được xác định sao cho
Vì BC // AD nên BC song song với mặt phẳng (SAD). Do đó khoảng cách giữa SA và BC chính là khoảng cách từ đường thẳng BC đến mặt phẳng (SAD).
Ta kẻ CK ⊥ SD, suy ra CK ⊥ (SAD), do đó CK chính là khoảng cách nói trên. Xét tam giác vuông SCD với đường cao CK xuất phát từ đỉnh góc vuông C ta có hệ thức:
Chú ý. Nếu kẻ KI // AD và kẻ IJ // CK thì IJ là đoạn vuông góc chung của SA và BC.
Chú ý :
Nếu kẻ KI // AD và kẻ IJ // CK thì IJ là đoạn vuông góc chung của SA và BC