Giá trị nhỏ nhất của hàm số y = e x x 2 − x − 1 trên đoạn [0;2] là?
A. -e
B. -1
C. -2e
D. e 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=e^{sinx}-sinx-1\)
\(\Rightarrow f'\left(x\right)=cosx.e^{sinx}-cosx=cosx\left(e^{sinx}-1\right)\)
\(f'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sinx=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{\pi}{2}\\x=\pi\end{matrix}\right.\)
\(f\left(0\right)=0\) ; \(f\left(\dfrac{\pi}{2}\right)=e-2\) ; \(f\left(\pi\right)=0\)
\(\Rightarrow f\left(x\right)_{min}=0\) ; \(f\left(x\right)_{max}=e-2\)
Ta có: y’= 1-e-x
Và y’= 0 khi 1-e-x = 0 nên x=0 .
Hàm số đã cho liên tục và xác định trên đoạn [-1 ;1]
Ta có: y(-1) = -1+e ; y(0) = 1 ; y(1) = 1+ e-1 .
Do đó
Vậy T= 1+ e - 1= e
Chọn B
Chọn A
Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau
Nhận thấy
Để tìm ta so sánh f(-1) và f(2)
Theo giả thiết,
Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0
Giá trị nhỏ nhất của hàm số y = x − 3 ln x trên đoạn 1 ; e bằng
A. 1.
B. 3 − 3 ln 3.
C. e.
D. e − 3.
Đáp án D.
Phương pháp:
Phương pháp tìm GTLN, GTNN của hàm số y = f x trên a ; b .
+) Giải phương trình f ' x = 0 ⇒ các nghiệm x 1 ∈ a ; b .
+) Tính các giá trị
f a ; f b ; f x i .
+) So sánh và kết luận:
m a x a ; b y = m a x f a ; f b ; f x i ; min a ; b y = min f a ; f b ; f x i
Cách giải:
ĐKXĐ: x > 0.
y = x − 3 ln x ⇒ y ' = 1 − 3 x = 0 ⇔ x = 3 ∉ 1 ; e
y 1 = 1 ; y e = e − 3 ⇒ min 1 ; e = e − 3
Đáp án A
Ta có: y ' = 1 − 1 x = 0 ⇔ x − 1 x = 0 ⇔ x = 1 . Ta có y 1 2 = 1 2 + ln 2 ; y 1 = 1 ; y e = e − 1
⇒ M a x y = e − 1 ; M i n y = 1
Chọn D
Ta có 3x.f(x) - x 2 f ' ( x ) = 2 f 2 ( x )
Thay x = 1 vào ta được vì f(1) = 1 3 nên suy ra C = 2
Nên Ta có:
Khi đó, f(x) đồng biến trên [1;2]
Suy ra
Suy ra
Chọn C.
Nhận xét: Hàm số đã cho liên tục trên [0;3]
Ta có: nên hàm số đồng biến trên [0; 3].
Đáp án A
Ta có: y ' = e x x 2 − x − 1 + e x 2 x − 1 = e x x 2 + x − 2 = 0 ⇔ x = 1 x = − 2
Ta có: y 0 = − 1 ; y 1 = − e ; y 2 = e 2 ⇒ M i n y 0 ; 2 = y 1 = − e