K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Đáp án C

Ta có y ' = f ' x − 2  dựa trên đồ thị ta thấy x ∈ 1 ; + ∞ ⇒ f ' x > 2 ⇒ f ' x − 2 > 0 ⇒ y  đồng biến

11 tháng 4 2019

Chọn D 

Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x)  đồng biến trên khoảng ( 0; π)

9 tháng 5 2017

Chọn D 

Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x)  nằm phía dưới trục hoành- tức là  f’( x)< 0 trên khoảng đó

=>  Hàm số  y= f(x) nghịch biến trên khoảng

10 tháng 12 2018

Chọn C 

Trong khoảng ( 0; 1)  đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.

=>  hàm số f(x)  nghịch biến trên khoảng (0; 1) .

 

3 tháng 10 2019

23 tháng 5 2019

Đáp án C

Từ đồ thị hàm số g = f’(x) ta thấy: hàm số f’(x) = 0 tại 2 điểm phân biệt x = -2 và x = 1

Mặt khác, tại x = 1 thì f’(x) đổi dấu từ dương sang âm, do đó hàm số y = f(x) đạt cực đại tại x = 1

15 tháng 3 2017

Chọn B 

Trên khoảng đồ thị hàm số f’( x) nằm phía trên trục hoành.

=> Trên khoảng ( -∞; -1) và ( 3; + ∞) thì f’( x) > 0.

=> Hàm số đồng biến trên khoảng ( -∞; -1) và ( 3; + ∞)

26 tháng 9 2017

Đáp án là  B.

Từ đồ thị của hàm số y , = f ( x )  ta có bảng biến thiên của hàm số y = f ( x )  như hình vẽ:

Từ bảng biến thiên ta có:  M = m a x { f ( - 1 ) ; f ( 1 ) ; f ( 2 ) }

10 tháng 5 2017

 

Dựa vào đồ thị hàm số f'(x) suy ra đồ thị hàm số đồng biến trên khoảng (-3;-2), đồ thị hàm số nghịch biến trên khoảng 

Chọn B.

 

31 tháng 7 2019

Chọn C