C/m:
B=1/10+1/11+1/12+...+1/100>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 )
<=> 1 / 10 + ( 1 / 11 + 1 / 12 + ... + 1 / 99 + 1 / 100 ) > 1 / 10 + ( 1 / 100 + 1 / 100 + ... + 1 / 100 )
<=> 1/ 10 + 90 / 100 = 1
Vậy C > 1 (đpcm)
Ta có :
Cần 30 số hạng đầu đã lớn hơn 1.
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
=> 1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
Vậy :C>1
Ta có:\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)> \(\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)[ 90 p/s \(\frac{1}{100}\)]
= \(\frac{1}{10}+\frac{90}{100}=\frac{10}{100}+\frac{90}{100}\)=\(\frac{100}{100}=1\)
Vậy \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)>1
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\)
\(A > \frac{1}{10} + (\frac{1}{100}+...+ \frac{1}{100}) \)
\(= \frac{1}{10} + \frac{99}{100} = \frac{109}{100} > 1\)
\(=> A > 1\)
đề sai hả bạn số hạng cuối có phải là \(\frac{1}{100}\)đúng không
\(C=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41}{50}+\frac{50}{100}=\frac{33}{25}=1\frac{8}{25}>1\)
Ta thấy rằng mỗi số hạng trong tổng đều lớn hơn hoặc bằng \(\frac{1}{100}\)
=> \(C>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}x100=1\)
=> C>1 (Đpcm)
Xét C = \(\frac{1}{11}+\frac{1}{12}+....+\frac{1}{50}\)(40 số hạng)
=> C > \(\frac{1}{50}.40\)
=> C > \(\frac{4}{5}\)
Xét D = \(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\)(50 số hạng)
=> D > \(\frac{1}{100}.50\)
=> D > \(\frac{1}{2}\)
=> B = \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{10}+\frac{4}{5}+\frac{1}{2}\)
=> B > \(\frac{7}{5}\) > 1
=> B > 1 (Đpcm)