Cho hình thang ABCD (AB // CD), có 𝟾 = 𝟾 = 90 0 và CD AB AD 2 . Kẻ BE vuông góc với CD (ECD). a) Chứng minh rằng tứ giác ABED là hình vuông. b) Gọi I là trung điểm của BE. Chứng minh tứ giác ABCE là hình bình hành, từ đó suy ra điểm A đối xứng với điểm C qua I. c) Kẻ DH vuông góc với AC (HAC), AE cắt DH tại M và AE cắt DI tại N. Chứng minh tứ giác DMBN là hình thoi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABED có
\(\widehat{A}=\widehat{D}=\widehat{BED}\)
Do đó: ABED là hình chữ nhật
a) Xét tứ giác ABCE có AB song song và bằng EC (gt) nên nó là hình bình hành.
b) Xét tứ giác ABED có AB song song và bằng DE (gt) nên nó là hình bình hành.
Lại có \(\widehat{ADE}=90^o\) nên ABED là hình chữ nhật.
Lại có AB = AD nên ABED là hình vuông.
c) Xét tam giác AME và DMB có :
ME = B
AE = DB (Hai đường chéo hình vuông)
\(\widehat{AEM}=\widehat{DBM}=45^o\) (ABED là hình vuông)
\(\Rightarrow\Delta AEM=\Delta DBM\left(c-g-c\right)\Rightarrow\widehat{MAE}=\widehat{MDB}\) (1)
Xét hai tam giác vuông AHI và DOI có:
\(\widehat{AIH}=\widehat{DIO}\) (Hai góc đối đỉnh)
\(\Rightarrow\widehat{HAI}=\widehat{IDO}\) (Cùng phụ với hai góc bên trên) (2)
Từ (1) và (2) ta có: \(\widehat{ODK}=\widehat{IDO}\) hay DO là tia phân giác của góc \(\widehat{IDK}\)
d) Xét tam giác IDK có DO là tia phân giác đồng thời là đường cao nên nó là tam giác cân tại D.Vậy thì DO là đường trung tuyến hay OI = OK.
Do ABED là hình vuông nên O là trung điểm BD.
Xét tứ giác DIBK có O là trung điểm hai đường chéo nên DIBK là hình bình hành.
Lại có \(IK\perp DB\) nên DIBK là hình thoi.
Câu hỏi của Nguyễn Thiên Anh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Ta có: \(AB=\dfrac{1}{2}CD\)(gt)
mà \(ED=EC=\dfrac{CD}{2}\)(E là trung điểm của CD)
nên AB=ED=EC
Xét tứ giác ABED có
AB//DE
AB=DE(cmt)
Do đó: ABED là hình bình hành
Xét tứ giác ABCE có
AB//CE
AB=CE
Do đó: ABCE là hình bình hành
- Do E là trung điểm của CD
\(=>DE=CE=\dfrac{CD}{2}\)
Mà \(AB=\dfrac{1}{2}CD\) (gt)
\(=>AB=DE=CD\)
- DE và CE trùng CD, AB // CD => AB // DE // CE
Tứ giác ABED có:
- AB=DE (cmt)
- AB // DE (cmt)
Vậy: Tứ giác ABED là hình bình hành (đpcm)
- Tương tự: Tứ giác ABCE có
- AB=CE (cmt)
- AB // CE (cmt)
Vậy tứ giác ABCE là hình bình hành (đpcm)
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a: Xét tứ giác ABHD có
\(\widehat{BAD}=\widehat{ADH}=\widehat{BHD}=90^0\)
=>ABHD là hình chữ nhật
Hình chữ nhật ABHD có AB=AD
nên ABHD là hình vuông
=>AB=BH=HD=DA
mà \(AB=AD=\dfrac{DC}{2}\)
nên \(BH=DH=\dfrac{DC}{2}\)
DH=DC/2
=>H là trung điểm của DC
Xét ΔDBC có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔDBC cân tại B(2)
Xét ΔBDC có
BH là đường trung tuyến
\(BH=\dfrac{DC}{2}\)
Do đó: ΔBDC vuông tại B(1)
Từ (1) và (2) suy ra ΔBDC vuông cân tại B
b: AB=HD
HD=HC
Do đó: AB=HC
Xét tứ giác ABCH có
AB//CH
AB=CH
Do đó: ABCH là hình bình hành
=>AC cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AC
c: \(\widehat{ADI}+\widehat{IAD}=90^0\)(ΔADI vuông tại I)
\(\widehat{ACD}+\widehat{IAD}=90^0\)(ΔADC vuông tại D)
Do đó: \(\widehat{ADI}=\widehat{ACD}\)
mà \(\widehat{ACD}=\widehat{BAC}\)(hai góc so le trong, AB//CD)
nên \(\widehat{BAC}=\widehat{ADI}\)